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Abstract. Complex ecosystems display well-defined macroscopic regularities suggest-
ing that some generic dynamical rules operate at the ecosystem level where the rele-
vance of the single-species features is rather weak. Most evolutionary theory deals with
genes/species as the units of selection operating on populations. However, the role of
ecological networks and external perturbations seems to be at least as important as
microevolutionary events based on natural selection operating at the smallest levels.
Here we review some of the recent theoretical approximations to ecosystem evolution
based on network dynamics. It is suggested that the evolutionary dynamics of eco-
logical networks underlie fundamental laws of ecology-level dynamics which naturally
decouple micro from macroevolutionary dynamics. Using simple models of macroevo-
lution, most of the available statistical information obtained from the fossil record is
remarkably well reproduced and explained within a new theoretical framework.

1 Macroevolution and extinction

Looking at today’s biosphere, it is hard to realize how much it has changed
through millions of years of evolution. Some groups of organisms, once success-
ful and ecologically dominant, went extinct. Extinction is the eventual fate of
all species. Even for some of the most succesful groups that flourished over very
long periods of time became extinct and vanished. Their remains are provided
by the fossil record, an incomplete but rather informative data set [7]. As David
Jablonski points out: “it is hard to resist the fossil record as a source of spec-
tacular evolutionary triumphs, grotesqueries and catastrophes” [25]. From the
Cambrian explosion of Metazoan life (about 550 million years ago) complex
forms have evolved on land and sea and a pattern of increasing diversity (fig-
ure 1) is matched by a pattern of extinction punctuated by large-scale events of
devastating consequences (figure 2).

Extinction has been seldom considered as a relevant ingredient in neodar-
winian theories. The classical view suggested by Darwin involved a slow process
of decline: “ species and groups of species gradually disappear, one after an-
other, first from one spot, then from another, and finally from the world”. The
rapid, sometimes massive extinction of entire groups was assumed to be due to
the incompleteness of the record. But we certainly know that this is not the
case: extinctions happen to occur at different intensities in different moments of
life’s history. The record shows many small events together with some few, mass
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Fig. 1. Number of known marine families alive over the time interval from the Cam-
brian to the present. Data compiled by J. Sepkoski.

500 400 300 200 100 0

time before present in millions of years

0

100

200

fa
m

ili
es

 b
ec

om
in

g 
ex

tin
ct

 p
er

 s
ta

ge

C− O S D C P Tr J K T

Fig. 2. Estimated extinction of marine animals in families per stratigraphic stage since
the Cambrian. The arrows indicate the positions of the “big five” mass extinctions.

extinctions that wiped out a great part of Earth’s diversity (see table 1). Of par-
ticular note are the five large peaks in extinction marked with arrows (figure 2).
These are the “big five” mass extinction events which marked the ends of the
Ordovician, Devonian, Permian, Triassic, and Cretaceous periods.
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Table 1. Extinction intensities at the genus and species level for the big five mass
extinctions of the Phanerozoic. Estimates of genus extinction are obtained from directed
analysis of the fossil record while species loss is inferred using a special statistical
technique.

Genus loss (observed) Species loss (estimated)
End Ordovician 60% 85%
Late Devonian 57% 83%
Late Permian 82% 95%
End Triassic 53% 80%

End Cretaceous 47% 76%

0 20 40 60 80 100
Percent extinction

0.00

0.05

0.10

0.15

0.20

F
re

qu
en

cy

 

 

Fig. 3. Frequency distribution of extinction events. It shows a continuous range of
values (instead of a bimodal one, as would be expected from a two-regime process, see
text). We can see a maximum indicating a possible characteristic scale.

Although most neodarwinian theory almost ignores extinction, the fact is
that the number of species extinctions in the history of life is almost the same as
the number of originations [52]. Early analyses suggested that two basic regimes
were involved in the overall pattern of extinction. The first would be “background
extinctions” (possibly due to biological competition) and a second one, the “mass
extinction” regime (perhaps associated to external stress). The observation of a
continuous distribution (figure 3) does not support this view. Instead, it suggests
a common causal origin for both large and small events. The problem is, of course,
the nature of such an explanation.

Two major types of explanation have been suggested over the last decades.
In one of them extinctions (particularly the large ones) result from external
(non-biotic) events such as meteorite impacts, volcanic eruptions or changes in
the magnetic field of Earth [52] [15] [50] [51]. This view has an obvious interest
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and relevance. There is clear evidence for external perturbations of the biosphere
throughout the Phanerozoic and any theory of macroevolution should incorpo-
rate them. The end-Cretaceous event (K/T) is particularly well known and is
consistent with a high-energy asteroid impact which generated severe darkening
with a temporal cesation of photosynthetic activity on a very large scale and a
rapid decrease in primary productivity (see below).

However, one should ask if these external events explain the previously men-
tioned features or are instead the trigger points of a cooperative biotic response.
In this sense, it has been shown that the response of the biosphere to the size of
the perturbation is far from linear [20] and the evidence does not suggest mass
extinctions generally caused by such impacts. Actually a rather extensive search
for extraterrestrial signatures at other stratigraphic intervals recording mass ex-
tinctions has been essentially negative [16]. In fact some impact structures have
no link with known extinction events. This is the case of the Montagnais impact
structure, with a size of 45-Km wide and an estimated age of ≈ 51 million years,
with no associated extinction event. And a potentially gigantic impact crater
found in the Kalahari desert (with a diameter of ≈ 350 Km) has been dated
around the Jurassic-Cretaceous boundary, were no evidence for severe extinc-
tions is known.

Most published studies on externally-driven extinctions involve the analysis
of available data together with a number of (usually qualitative) hypothesis
concerning the correlations between physical and biotic patterns. Few theoretical
models in the paleobiological literature have developped quantitative predictions
of statistical patterns and in this sense their conclusions are mainly based in a
priori assumptions of what mechanisms are at work. There are a few relevant
properties of the fossil record that should be explained by any plausible theory
of macroevolution [64]:

1. The Extinction pattern of species (or families or other taxonomic units) is
clearly “punctuated” (strictly speaking this term is not properly used in the
same context as it was first introduced in evolutionary biology). This means
that rapid changes can be seen in the system in terms of large extinction
(or diversification) events. This pattern has been shown to display long-range
correlations [63] [65] [24].

2. The distribution of extinctions N(m) of size m follows a power-law decay with
N(m) ∝ m−α with α ≈ 2 [62] [41]

3. The lifetime distribution of family durations N(t) follows a power-law decay
N(t) ∝ t−κ being κ ≈ 2 [58].

4. The statistic structure of taxonomic systems also shows fractal properties. For
example, the number of genus formed by S species, Ng(S), follows a power-law
distribution with Ng(S) ∝ S−αb with S−αb ≈ 2 [11] [12].

5. A study of the rates at which different groups of organisms go extinct through
time shows that a species might disappear at any time, irrespective of how
long it has already existed. This result, first reported by Leigh Van Valen
strongly modified the ecological view of macroevolution [68] [8]. The fine-scale
structure of these patterns is, however, episodic (see figure 4) and reflect the
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Fig. 4. Survivorship of 2316 families of marine animals over the past 600 Million years.
Each line is a so called pseudocohort which starts (upper left) with th efamilies present
in the fossil record at a point in time. Mass extinctions appear as sharp drops in
survivorship (adapted from Raup, 1986).

interplay between slow dynamical processes and rapid changes that appear as
drops in the diversity curves [54].

The presence of long-range correlations in the fossil record time series has
been a source of controversy [43] [32]. One clear conclusion from the disagree-
ments between different studies is that the direct application of spectral tech-
niques to the fossil record data has been far from appropriate, and the only clear
conclusion is that there are long-range correlations [1], although their range and
origins are debatable. Some authors have recently explored the problem of prop-
erly analysing the FR data sets [18] by means of the Lomb’s method, which allows
to obtain appropriate characterizations of uneven time series with nonstation-
ary behavior. In this context, V. Dimri and M. Prakash have found evidence of
long-range correlations together with a periodic component, thus confirming the
presence of at least to types of structures in the large-scale dynamics of the bio-
sphere. These results have been confirmed by means of wavelet analysis (Solé and
Valverde, unpublished). The wavelet transform [49] replaces the Fourier trans-
form’s sinusoidal waves by a family generated by translations and dilations of a
window called a wavelet. In this sense, a big disadvantage of a Fourier expansion
is that it has only frequency resolution and no time resolution. This means that
although we might be able to determine all the frequencies present in a signal,
we do not know when they are present. The wavelet analysis takes advantage of
nonstationary behavior and allows to see that the fossil record shows a fractal
pattern over long time scales.
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More recently, Plotnick and Sepkposki have presented a re-analysis of the
available data suggesting that it is better understood in terms of a conceptual
model, based on a hierarchy of levels that interact in a multiplicative fashion [48].
The authors compare their model outcomes with improved extinction and orig-
ination data and find a good agreement, thus concluding that it provides a
better understanding of macroevolutionary patterns than the ones presented by
previous models (to be discussed below). In this sense, it is important to estab-
lish appropriate criteria allowing to evaluate the value of a given model when
compared to the fossil record data. Most of the published literature (both in
paleontology and physics) present models or analysis that concentrate in one or
two basic traits, completely ignoring the whole picture that emerges when all the
available data is taken into account. Although there are many open questions
emerging from the new theoretical approaches [39] [27] one clear test for any
sensible theoretical explanation of macroevolutionary patterns of extinction and
diversification is to be able to reproduce as many quantitative traits as possible.

A number of mathematical models of long-term evolutionary patterns have
been proposed by several authors. The earliest and most appealing of them is
Sepkoski’s model of competition, which assumed that the Cambrian, Paleozoic
and Modern evolutionary faunas each diversified logistically as a consequence
of early (exponential) growth followed by a slowing down as ecosystems became
filled [56] [26]. By tuning several parameters and a set of external perturbations
similar to those suggested by the fossil record, a very similar pattern of diver-
sification is obtained. Although this model is simple and appealing, the lack of
a unique parameter determination and the number of assumptions implicit in
the competition model makes it essentially descriptive. A similar criticism can
be applied to other models, although their value as a theoretical framework is
undeniable.

More recently, a new generation of models give support to a scenario where
externally-driven ecological responses might play a relevant role [5] [64] [47].
These models have shown that it is possible to reproduce many quantitative
traits displayed by the fossil record and even a new theoretical interpretation of
the macroevolutionary process. The implications for macroevolution are signifi-
cant. They suggest that multispecies interactions are a key ingredient in shaping
the structure of evolving ecosystems and that the fate of individual species would
be the result of collective phenomena, not reducible to a list of independent fit-
nesses. In this context, it has been suggested that long-term, ecological-level net-
work dynamics provides the natural decoupling between micro- and macroevo-
lutionary patterns [59] [64].

Evolution does not take place in an ecological vacuum. Even the first ecolo-
gies emerging from the Cambrian boundary have been shown to display some
of the characteristic features of modern ecologies [17]. Besides, the aftermath of
mass extinctions show that ecological-based responses underlie the extraordinar-
ily protracted lag-times for recovery before similar diversity levels are reached
again [33] [21] [22] [23]. Besides, in many well-documented cases, changes in
the pattern of extinction and diversification are directly associated with ecolog-
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ical responses (such as the emergence and evolution of mineralized exoskeletons
triggered by predation).

This review has been writen with a partisan view of macroevolution based
on an ecological representation of evolving biological structures. In that sense, I
am not considering other types of models where such a network of interactions
is essentially ignored. This is certainly a limitation, since I am sure that other
approaches, such as Newman’s stress model [41] [42] or Sibani’s reset model [57]
have a very important value and are close to reality in many ways (not to men-
tion the fact that in many ways the Phanerozoic involves different sources of
innovation and thus of nonstationarity). In truth, the final answers to the prob-
lems arising from the patterns displayed by the fossil record are likely to be
understood by using appropriate ingredients provided by these different approx-
imations.

2 Coevolution on a rugged fitness landscape

The first attempt to understand large-scale evolution in terms of a complex
adaptive system with interactions among different species was introduced by
Kauffman and Johnsen [29], who used previous theoretical work on fitness land-
scapes [30]. The model is inspired in previous theoretical work by Per Bak and
co-workers on self-organized criticality [3], [5], [6]. The basic idea of the fitness
landscape metaphor is that single species can be characterized in terms of a
string of genes or traits, S1S2...SN which constitute the “genotype” and have
an associated real number Φ(S1S2...SN ) ≥ 0 usually normalized to one. This
quantity is the fitness of the string and the distribution of fitness values over the
space of genotypes defines the fitness landscape (figure 5). Depending upon the
distribution of the fitness values, the fitness landscape can be more or less rugged.
The rugeddness of the landscape is a crucial property, strongly constraining the
dynamics. If we consider a population of strings, then the way this population
evolves depends on how mountainous the landscape, how large is the population
size and on mutation rates [30].

Rugged landscapes (RL) are a common feature of many different complex
systems, from RNA viruses to glasses. They have been studied from various
viewpoints in disparate areas such as biophysics of macromolecules to combina-
torial optimization problems.

If we want to model macroevolutionary dynamics, then in principle many
different, coupled species have to be taken into account. Each species is charac-
terized by the number of traits N and by another parameter K which is in fact a
measure of the degree of ruggedness (it gives the number of epistatic interactions
among genes/traits). The fitness of a given string is obtained by means of a table
of values, as the one shown in figure 6. Here a N = 3,K = 2 system is shown,
together with the corresponding landscape, here just a simple three-dimensional
cube. Adaptive walks only occur in the direction of increasing W , and so the
system is finally frozen at one of the two local maxima (here indicated by means
of circles).
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Fig. 5. Simple, two-dimensional continuous rugged landscape. This corresponds to the
early metaphor suggested by Sewall Wright. Here a given species is defined as a two-
trait pair (xi, yi). For each pair a fitness φ(xi, yi) can be defined. The ruggeddness of
the landscape controls the population flow through trait space. If the landscape is very
rugged, historic effects play a dominant role.
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Fig. 6. How to built a fitness landscape. We have a N = 3 string with K = 2
interactions among each trait (so called epistatic interactions) and a table providing
the fitness W (i) of each individual trait given a particular string sequence.

This NK model has been widely explored and many relevant results con-
cerning its statistical properties have been derived. This is not surprising, given
its close similarity with spin glass (SG) models. As in SG, frustration takes place
and allows to understand the distribution of peaks when K is tuned. The basic
dynamics in this model involves adaptive walks. Here for a single species we
choose a given trait and flip a coin (i. e. mutate) the bit. Then we look at the
fitness table and if the average fitness of the new configuration is larger than the
last one, an adaptive walk occurs and so a movement in the fitness landscape.
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If not, no walk is allowed to occur. This simple procedure leads to a hill climb-
ing in the landscape until a local peak is reached. Afterwards, nothing happens.
For K = 0 (the Fujiyama landscape) no interactions among different traits are
present and a very smooth landscape is obtained, with a single global maximum
and an expected number of walks Lw = N/2 to reach the optimum. This is a
highly correlated, simple landscape.

At the other extreme, when K = N − 1, the landscape is fully random.
Several interesting properties have been reported, among others: (a) the number
of local fitness optima is maximum; (b) the expected number of fitter one-mutant
variants drops by 1/2 at each improvement step; (c) the length of adaptive walks
to optima are short, with a characteristic value Lw ≈ log(N).

For an uncorrelated landscape, each bit string is assigned a fitness at ran-
dom, so even single-bit changes may have very different fitness values. Although
this is not a biologically realistic model, it allows to obtain some basic analytic
results and will help to understand the coevolutionary patterns arising from the
Kauffman-Johnsen model.

The number of maxima is easily calculated. If only one-bit mutations per
string are allowed to occur, each string has N one-bit neighbors. The probability
that any one string has higher fitness than any of its neighbors is:

P1 =
1

N + 1
(1)

and thus the average number of local maxima is 〈M1〉 = P12N . The length of
the walks can also be estimated [55]. Let us assume that we start with the least
fit string, and that the range of fitness values is constrained to the unit interval,
with a uniform distribution over fitness space. Any mutation will give a fitness
increase with an average value, for the first walk, of 〈F1〉 = 1/2. The second
walk will increase the fitness to an average 〈F2〉 = 3/4 and after k walks we will
have:

〈Fk〉 = 1 −
(

1
2

)k

(2)

It is easy to show that the probability of a string not reaching a local maximum
after k walks is:

Pk =
(

1 − 1
2k

)N−1

(3)

If we define ωk = 1 − Pk, the probability Lk that the walk will last through the
k-th step is:

Lk =
k∏

r=1

ωr =
k∏

r=1

[(
1 − 1

2r

)N−1
]

(4)

Most walks will proceed until Lk < 0.5, i. e. until ≈ log(N − 1) steps.
Now the problem is how to obtain a more complete picture of an evolving

system formed by many species in interaction. This can be done by using the
so called NKC model [29]. The parameter C introduces the number of couplings
between species. Again each species is represented by just a string (instead of
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a population of individuals) which somehow defines the average characteristics
(the phenotype) for that particular species. Now each trait receives “inputs”
from C other traits belonging to different species. These traits are chosen at
random between the S species.

The NKC model shows two well defined dynamical regimes (phases). These
regimes are the high-K, chaotic phase, where changes in the ecosystem are al-
ways taking place (i. e. the system does not settle down in a number of local
optima) and the low-K, ordered (frozen) phase where local optima are reached
by all species (the so called Nash equilibria in economic theory). At the boundary
separating the two phases, complex dynamics takes place. For a given N , if C is
small (below a given threshold) then the whole population evolves into a state
where no further changes take place and all species are at Nash equilibria. How-
ever, after a critical point is reached, the dynamics becomes chaotic and no final
steady state is obtained. Just at the boundary, species in a finite system reach
local peaks but any small perturbation generates a coevolutionary avalanche of
changes through the system. The distribution of these avalanches is a power law,
as expected for a critical state. Kauffman and Johnsen mapped these avalanches
into extinction events, suggesting that the number of changes in species is pro-
portional to the extinction of less-fit variants. If this analogy is used then the
obtained scaling relation for avalanches of S changes is N(s) ∝ S−1, which does
not agree with the value reported from the fossil record. However, a further
version of this model (allowing evolution in the parameters) has been shown
to self-organize to the critical state [31] with avalanches following the correct
τ = −2 exponent (figure 7). The final picture that emerges from this last model
is that as species tune their own landscapes (by readjusting the ruggedness) they
poise the entire ecosystem close to the critical boundary.

Some analytic work on the NKC model has been done by Per Bak and co-
workers. If we restrict ourselves to the K = N − 1 case and assume a large
number of species, the existence of two well-defined phases in the (N,C)-plane
can be derived [4]. Let us assume that the fitness values are uniformly distributed
in the interval U = [0, 1]. Additionally, let us assume that instead of keeping the
C randomly chosen foreign genes that any species depends on, we exchange this
“quenched” randomness for “annealed”. This just means that the C connections
are randomly assigned at each time step. Finally, let us consider a very large
ecosystem so that a probability density can be defined. Here ρM (F, t) will be the
fraction of species with fitness F and M less-fit 1-mutan neighbors at time t.

Bak et al. define a quantitative measure of the evolutionary activity in the
system [4]. This quantity, A(t), gives the probability that a change in a random
gene leads to higher fitness (and therefore is accepted):

A(t) =
N∑

M=0

(
1 − M

N

)∫ 1

0
dFρM (F ; t) (5)

where 1 −M/N is the probability that the change of a single random unit leads
to higher fitness.
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Fig. 7. Power law distribution of coevolutionary avalanches in the modified Kauffman-
Johnsen model. Here two different results are shown. One is for a NKC network where
the K-parameter has been fixed to a high value (in the chaotic regime) and the lower
one is obtained in a system where the landscape ruggedness is allowed to evolve. The
parameters are C = 1, S = 25, N = 44 and K evolves towards an intermediate value
(K ≈ 22).

Now the probability that such a mutation is accepted and leads to a fitness
F (for the changed species) is:

Φ(F ; t) =
∫ F

0
dF ′φ(F ′; t) (6)

where

φ(F ′, t) =
1

1 − F ′

N∑
M=0

(
1 − M

N

)
ρM (F ; t) (7)

Using these quantities, a master equation can be derived, leading to:

∂

∂t
ρM (F, t) = −

(
1 − M

N

)
ρM (F ; t) +BM,N (F )Φ(F, t)

− C

N
A(t)ρM,N (F, t) +

C

N
A(t)BM,N (F, t) (8)

This equation gives the time evolution of the (relative) number of species with
fitness F and M less-fit neighbors. Here BM,N (F ) is a binomial distribution with
mean F , i. e.:

BM,N =
N !

M !(M −N)!
FM (1 − F )N−M (9)

standing for the probability thet M out of N one-mutant neighbors to a genome
with fitness F are less fit than F .
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Although a detailed analysis of the parameter space can be derived, here
only an estimation of this phase space will be obtained. A trivial solution of the
master equation is given by all species placed in local fitness maxima:

ρ∗
M (F, t) = δM,Nρ(F ) (10)

As usual, the relevance of this solution depends on the connectivity C. Here
ρ∗

M (F, t) will be attractive if C = 0 and at the other extreme, when C/N � 1
we get

ρ∗
M (F, t) = BM,N (F ) (11)

which corresponds to maximum activity A = 1/2.
The interesting properties are observed at intermediate (0 < C < N) values

of the connectivity. If some stationary activity is present for a given C value,
we could ask whether this activity stops or not. We can obtain an approximate
relation between C and N that will give us the critical line separating frozen
from chaotic phases.

We have previously mentioned that in NK landscapes with K = N − 1, an
average number of adaptive walks (until a local maximum is reached) follows a
logarithmic dependence

µ1 ≈ ln(N) (12)

For a NKC landscape this is a lowest bound to the number of changes per species
by which the NKC model can evolve to the fixed point ρ∗

M (F, t).
Now, suppose that, for a given C-value, the species have been arranged in

order to satisfy (10). A small perturbation is then introduced: the fitness of one
species is changed to a random value, being the others in the same state. Such
a perturbed species will need an average of µ1 steps before to reach a local
maximum. But in fact the fitness of other species depends, through C, on the
values taken by other genes/traits. If any of these genes/traits are among the
µ1 ones that changed through the walk, the affected species will set back in
evolution. Our question of course is whether or not the initial change can trigger
a “chain reaction” able to percolate through the system. The critical condition
is easily obtained:

µ1
Ccrit

N
= 1 (13)

i. e. when, on the average, one out of C randomly chosen genes is among the µ1
changed genes. This gives the critical line in the (N,C) space:

C =
N

ln(N)
(14)

This line separates the two phases.

3 Network model of macroevolution

One of the criticisms to the previous model (and other early models based on
self-organized critical behavior, such as the Bak-Sneppen model [5]) is that they
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lack true extinction and diversification [35]. Although the evolutionary activity
in these models has something to do with the underlying extinction dynamics,
it is not obvious how to map the first into the second. On the other hand, one
of the obvious rules to be considered by any reasonable model is replacement
of empty niches by surviving species. And these species will interact through a
new, evolving network of connections.

The standard mathematical approach to population dynamics is the Lotka-
Volterra (LV) n-species model,

dNi

dt
= Ni

(
εi −

n∑
j=1

γijNj(t)

)
(15)

where {Ni}, i = 1, ..., n are the populations of each species. These models have
been explored in deep. Two main qualitative problems have been considered:
(i) small-n problems, involving two or three species and (ii) large-n models,
involving a full network of interacting species.

The Lotka-Volterra equations used in most models of multispecies ecosystems
are too difficult to manage if the matrix of interactions Γ is formed by time-
dependent terms (as one would expect in an evolving ecosystem). We want to
retain the basic qualitative approach, but our interest is shifted from population
sizes to the appearance and extinction of species. Here species are defined as a
binary variable: Si = 0 (extinct) or Si = 1 (alive). The state of such species
evolves in time (now assumed discrete) according to

Si(t+ 1) = Φ(φi(t)) = Φ

(
n∑

j=1

γij(t)Sj(t)

)
(16)

with i = 1, ..., N . Here Φ(z) = 1 if z > 0 and zero otherwise. Equation (2) can
be understood as the discrete counterpart of (1), but involving a much larger

extinct species

extinction diversification

extinct species

chosen 
species

new network

Fig. 8. Basic rules of the network model of evolution. After a number of species are
extinct (here two of them), one of the survivors is chosen (center) to repopulate the
network. The diversification is performed by copying the connections of the chosen
species. These rules are completed with a random change of connections involving
both internal and external changes.
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time scale. In this model, first introduced by Solé [59] [60] [61], the i−th species
is in fact represented by the set of connections {γij , γji}, ∀j. The elements γij

are the inputs and define how the the other species influence it. The symmetric
elements γji are the outputs and represent the influence of this species over the
remaining ones in the system.

The dynamics of this model is defined in three steps:

1. Changes in connectivity. Each time step we change one connection γij which
takes a new, random value γij(t + 1) ∈ [−1, 1], for each i = 1, ...N , with
j ∈ {1, ..., N} chosen at random. This rule is linked to changes in species
interactions. They could be associated with external causes or simply be the
result of small changes as a consequence of coevolution. This rule introduces
random, small changes into the network.

2. Extinction. The local fields φi(t) =
∑

j γij(t)Sj(t) are computed, and all
species are synchronously updated following (2). If the k−th species goes ex-
tinct, then all the connections that define it are set to zero, that is γkj =
γjk ≡ 0, ∀j. This updating introduces extinction and selection of species.
Those sets of connections which make a species stable will remain. But in re-
moving a given species, some positive connections, with a stabilizing effect on
other species can also disappear, and the system can become more unstable.

3. Replacement. Some species are now extinct (i. e. Sk = 0), empty sites are
available and diversification is introduced. A living species is picked up at
random and “copied” in the vacant niches. The new species are basically
identical to the one randomly choosen, except for a small random change in
all their connections. Specifically, let Sc the copied species. For each extinct
species Sj (vacant spaces), the old connections are set to zero, and the new
connections γij and γji are given by γkj = γcj + ηkj and γjk = γjc + ηjk. Here
η is a small random variation (typically ηkj = O(10−2). In this way, the new
species are the result of the diversification of one of the survivors.

The random changes in the network connections make the trophic links be-
tween species more and more complex. We can quantify such complexity by

10
0

10
1

10
2

Extinction size

10
0

10
1

10
2

10
3

10
4

F
re

qu
en

cy

0 10000 20000
time

0

50

100

E
(t

)

−2.04

Fig. 9. Power law distribution of extinction events in the network model (left). The
corresponding time series is shown (right).
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means of an adequate statistical measure. Let us first consider the time evolu-
tion of connections. Let P (γ+) and P (γ−) = 1 − P (γ+) be the probability of
positive and negative connections, respectively. The time evolution of P (γ+, t)
is defined by the master equation

∂P (γ+, t)
∂t

= P (γ−, t)P (γ− → γ+) − P (γ+, t)P (γ+ → γ−) (17)

From the definition of the model, we have a transition rate per unit time given
by P (γ+ → γ−) = P (γ+ → γ−) = 1/(2N) and so we have an exponential
relaxation

P (γ+, t) = (1 + (2P0 − 1) exp(−t/N))/2

where P0 = P (γ+, 0). This result leads to an exponential decay in the local
fields, φi(t) ∝ exp(−t/N). As a result, the system evolves towards a (critical)
state where the sum of the inputs introduced by the coevolving partners are small
and so small changes involving single connections can generate extinctions.

We can use the entropy of connections per species, i. e. the Boltzmann entropy

H(P (γ+, t)) = −P (γ+, t) log(P (γ+, t)) − (1 − P (γ+, t)) log(1 − P (γ+, t)) (18)

as a quantitative characterization of our dynamics. The Boltzmann entropy (also
known as the Shannon entropy) gives us a measure of disorder but also a measure
of uncertainty. It is bounded by the following limits: 0 ≤ H(P (J+, t)) ≤ log(2).
These limits correspond to a completely uniform distribution of connections (i. e.
P (γ+, t) = 1 and P (γ−, t) = 0) with zero entropy and to a random distribution
with P (γ±, t) = 1/2 which has the maximum entropy. Our rules make possible
the evolution to the maximum network complexity, here characterized by the
upper limit of the entropy.

As H(P (γ+, t)) grows, after a large extinction event, towards its maximum
value H∗ = log(2), sudden drops take place near large extinctions. So our system
slowly evolves towards an “attractor” characterized by a randomly connected
network. At such state, small changes of strength 1/N can modify the sign of
φi and extinction may take place. At this point, one clearly sees what is the
role that external perturbations play: for them to trigger a large extinction, it
is necessary that they act on a system located close to the critical state (here,
the network close to the maximum entropy). A large extinction will never be
found in a system with a low entropy of connections even with a reasonably
large external perturbation. We can see that a wide distribution of extinctions
is obtained: it is a power-law distribution, N(s) ≈ s−τ with τ = 2.05 ± 0.06,
consistent with the information available from the fossil record. Actually, the
previous rules are able to reproduce the most relevant features of the observed
dynamics in the fossil record, including the presence of well-defined transient
trends (see table 2 and figure 10).

A mathematical model can be derived for this mean-field approximation [36].
The starting point is again a set of N species, now characterized by a single
integer quantity φi (i = 1, 2, ..., N). This quantity will play the role of the internal
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Table 2. some basic trends of macroevolutionary patterns. Observed and predicted by
the SOC model (see text). All the quantitative reported exponents from the FR are
reproduced by the SOC model as well as the qualitative features like the diversification
curves. ((1): recent studies seem to suggest a lower exponent, of about γ ≈ 1.6 [44]).

Property Observed SOC Model
Dynamics Punctuated Punctuated

Mass extinctions Few events Expected
Diversity Increasing Transiently increasing

Species decay Exponential Exponential
Extinction pattern, N(E) Power law (α ≈ 2) Power-law (α ≈ 2)

Hurst exponent, H persistence, H > 1/2 persistence H > 1/2
Genera lifetimes N(T ) Power law(1) (γ ≈ 2) Power law (γ ≈ 2)
Genera-species Ng(S) Self-similar, (τ ≈ 2) Self-similar,(τ ≈ 2)
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Fig. 10. Patterns of extinction and diversification for the mean field approximation to
the network model. (A) Extinction dynamics, (B) diversity dynamics, here defined in
terms of the number of genera in the system. In (C) we show the transient increase in
diversity. It fits quite well the observed trends displayed by the fossil record. We also
show the occurrence of large extinctions, as indicated by the arrows.

field, as before. Each species is now represented by this single (now assumed
integer) number φi ∈ {−N,−N + 1, ...,−1, 0, 1, ..., N − 1, N}.

The dynamics consists of three steps: (a) with probability P = 1/2, φi →
φi − 1, otherwise no change occurs (this is equivalent to the randomization rule
in the network model); (b) all species with φi < φc (below a given threshold)
are extinct. Here we use φc = 0 but other choices give the same results. The
number of extinct species, 0 < E < N , defines the extinction size. All E extinct
species are replaced by survivors. Specifically, for each extinct site (i. e. when
φj < φc) we choose one of the N − E survivors φk and φj = φk; (c) after
an extinction event, a wide reorganization of the web structure occurs. In this
simplified model this is introduced as a coherent shock. Each of the survivors
are updated as φk = φk + q(E), where q(E) is a random integer between −E
and +E.
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The master equation for the dynamics involves the following three-step pro-
cess:

N(φ, t+ 1/3) =
1
2
N(φ, t) +

1
2
N(φ+ 1, t) (19)

N(φ, t+ 2/3) = N(φ, t+ 1/3)

+N(φ, t+ 1/3)
∑
m

m

N −m
P (m) (20)

if φ > 0 and zero otherwise. Finally:

N(φ, t+ 1) = N(φ, t+ 2/3) −N(φ, t+ 1/3)

+
∑

q>−φ

N(φ+ q, t+ 1/3)P (q) (21)

equations (19–21) lead to the full master equation for the dynamics:

N(φ, t+ 1) =
1
2

+∞∑
q=−∞

∑
m

P (m)
2m+ 1

θ(m− |q|)

×
[
N(φ+ q, t) −N(φ+ q + 1, t)

]

+
1
2
[N(φ, t) +N(φ+ 1, t)]

∑
m

mP (m)
N −m

(22)

Where two basic statistical distributions, which are self-consistently related,
have been used. These are:

P ∗(q) =
∑
m

Pe(m)
2m+ 1

θ(m− |q|) (23)

which is an exact equation giving the probability of having a shock of size q.
Here Pe(m) is the extinction probability for an event of size m, and now we have
a mean-field approximation relating both distributions:

Pe(m) =
∑

q

P ∗(q)δ
[q−1∑

φ=1

N(φ) −m
]

(24)

The last equation uses the so called average profile N(φ). This function is the
time-averaged distribution of φ-values. Here we follow the Manrubia-Paczuski
argument [36] for the mesoscopic regime 1 � q � N . By Taylor-expanding the
the master equation, i. e.

N(φ) =
1
2

+∞∑
q=−∞

∑
m

P (m)
2m+ 1

{
2N(φ+ q) +

∂N

∂φ

∣∣∣∣∣
φ+q

+
1
2
∂2N

∂φ2

∣∣∣∣∣
φ+q

+...

}

+
1
2

{
2N(φ) +

∂N

∂φ

∣∣∣∣∣
φ

+
1
2
∂2N

∂φ2

∣∣∣∣∣
φ

+...

}∑
m

mP (m)
N −m

(25)
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Fig. 11. Pattern of species extinction in the network model of macroevolution: on av-
erage, species get extinct in an exponential way, but this average pattern is punctuated
by coextinction associated with mass extinction events.

and using a continuous approximation, it is easy to see that the previous equation
reads:

1
2

∫
dm

∫ m

−m

P (m)
2m

{
2
[N(φ+ q)

N(φ)
− 1
]

+
∂LnN

∂φ

∣∣∣∣∣
φ+q

+...

}

+
1
2

{
2 +

∂LnN

∂φ

∣∣∣∣∣
φ

+...

}∫
mP (m)
N −m

dm = 0 (26)

Using an exponential ansatz for the average profile, i. e. N(φ) = exp(−cφ/N),
we can integrate each part of the last equation, assuming N(φ + q)/N(φ) =
exp(−cq/N) ≈ 1 − cq/N . It is easy to check that the first term cancels exactly,
the second gives −2c/N and the third scales as (1 − O(1/N))N1−τ . So the
previous equation leads to:

−2c
N

+N1−τG
(
1 −O(

1
N

)
)

= 0 (27)

in order to satisfy this equality, we need τ ≈ 2, which gives us the scaling expo-
nent for the extinction distribution. This is confirmed by numerical simulations,
which give τ = 2.

This model (actually both of them) also display the observed exponential
decay in species survival displayed by fossil record data. In figure 11 we show an
example of our runs. This corresponds to the law of constant mean extinction
rate, also known as Van Valen’s law [68]. As mentioned in the introduction, this
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law maintains that the probability of extinction within any group remains essen-
tially constant through time. This is a consequence of the Red Queen theory and
an observational result. This is, however, an average: on average, extinction rates
are constant but a close inspection of the decay curves shows both continuous
and episodic decays. The sudden, episodic drops are often associated with mass
extinctions and are usually assumed to be the result of external perturbations.

The episodic nature of the species decay is easily explained by our model.
Though long periods of stasis and low extinction rates give a constant decay, the
same intrinsic dynamics generates the episodes of extinction involving several
(some times many) species. The survivorship curves shown in figure 11 are gen-
erated by starting at a given (arbitrary) time step in the simulation and following
all the species present at this time step. The exponential decay in the number of
survivors is closely related to the monotonous drift that the system experiences
towards the extinction threshold, due to the constant change of connections to
random values. As we can see (and this is rather typical) both constant and
episodic decays are observed. We do not need to seek for a special external ex-
planation for the episodic decay. Obviously, an external cause can trigger a large
extinction event by altering the network dynamics at the critical state. Extinc-
tions are an unavoidable outcome of network dynamics. Though some selection
of connections is present after each extinction event, unpredictability is always
present. A given species with a high “fitness” (defined in terms of the total input
field it receives) can get extinct in a few steps due to an extinction avalanche
propagating throughout the network.

4 Extinction in layered networks

The third class of models to be analysed here involves a very important aspect
of real ecologies: the presence of different trophic levels. This is important not
only because it adds an ingredient of realism to the topology of species interac-
tions, but also because it has deep consequences on the dynamics. Real ecologies
have some amount of hierarchical organization that can be described (on a first
approximation) as a set of layers of interacting species. Such layers go from pri-
mary producers at the bottom to top predators in the upper floor. The number
of layers is limited through both energetic and dynamic constraints [46]. This
is, again, an oversimplification, since real ecosystems are not fully hierarchical.
Actually, they show small world topology [40].

It is well known that the ffects of perturbations on primary producers can
have important (if not devastating) consequences on other parts of the food
chain. Such effects can be direct: an example is provided by the K/T event.
Here the extinction pattern in marine habitats is entirely compatible with the
effects of decreased food supply for higher trophic levels due to the collapse
of phytoplankton productivity [2]. At the end-Cretaceous, primary productivity
declined suddenly and considerably. The further decay of many species at higher
trophic levels in oceanic plankton communities was mainly due to this decline.
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But cascade effects are also triggered by the removal of keystone species at
any level in the web. Keystone species are specially relevant because of their large
impact on the community dynamics, stability and composition. Their loss can
cause extinctions to cascade throughout the system. An example provided by the
fossil record is the extinction of megaherbivores (such as mastodon and mam-
moth) at the end-Pleistocene [45]. These species, mainly large herbivores, were
essentially invulnerable to non-human predation on adults. As a consequence,
they attained high (saturating) densities. Their effects on vegetation patterns
were huge (as it occurs today with elephants) and their loss had a catastrophic
impact. As a very attractive prey to humans, their extermination brought exten-
sive vegetational changes, eventually generating the concomitant disappearance
of so many other vertebrates.

Such cascading effects have been reported in different field studies [9] [10], and
their ecological effects have long been suspected for the major mass extinctions.
They have been incorporated in a simple model ecosystem with layered structure
by Amaral and Meyer [1].

The model considers L levels (l = 0, 1, ..., L − 1) with N niches per level
(figure 12). We can indicate the presence or absence of species at the i-th niche
in the l-th level by a binary variable Si(l). The bottom species, belonging to the
l = 0 layer, define the group of organisms which do not feed on others. From
l = 1 to l = L − 1 the species of these layers feed on k or less species on the
lower (l − 1)-level.

The rules are very simple: (a) a new species is created at each niche at a
rate µ. If l > 0, then k prey species are randomly chosen from the (l − 1)-layer;
(b) at a given rate p, species at the bottom layer are extinct. Then for species
at l > 0 layers, extinction takes place if no input links are present. Thus if
W (i, j; l − 1 → l) indicates the connection between species i ∈ l − 1 and species
j ∈ l (here this connection is either one or zero) then:

Sj(l) = Φ

[
N∑

i=1

W (i, j; l − 1 → l)

]
(28)

where now Φ(z) = 1 for positive z and zero for z = 0. Clearly, the link among
connected species will be able to generate avalanches of coextinction through
different layers. From numerical simulations, Amaral and Nunez showed that in
fact the distribution of avalanches is a power law with an exponent −2, consistent
with the fossil record data.

An elegant analytic derivation of this result was obtained by Barbara Dros-
sel [19]. Let us consider the k = 1 case. In this specific situation, each species
feeds only on one prey species at the lower layer. Several species on different
layers will eventually feed on the same bottom species, and the trophic structure
looks like a set of trees starting at a single species in the lower level. From rule
(b) each time a bottom species is removed (with probability p) a whole tree is
gone and thus the size distribution of extinction events must be identical to the
tree size distribution.
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l=0

l=1

l=2

l=3

k=1

Fig. 12. Network structure of the simplest (k = 1) Amaral-Nunez layered ecosystem.
The basal layer is formed by those species not feeding on others.

Assuming stationarity (and so a given mean number of species per level) a
mean-field equation for the density of species at each layer ρl can be derived:

dρ

dt
= µ(1 − ρ) − pρl (29)

This equation has a fixed point ρ∗
l = µ/(p+µ). Let Λi

l(t) the number of species at
the l-th layer connected to the i-th bottom species. The growth of Λi

l(t) follows
the dynamical equation:

dΛi
l

dt
=
[µ(1 − ρl)

ρl−1

]
Λi

l−1 = pΛi
l−1 (30)

And as a consequence the size of a whole tree T i =
∑

l Λ
i
l will follow a linear

equation
dT i

dt
= pT i (31)

i. e. we have
T i(t) = T i(0) exp(pt) (32)

with T i(0) = 1. The size distribution of trees, P (Λ) is linked to the age dis-
tribution P (t) through P (Λ) = P (t)dt/dΛ. Here P (t) follows the simple decay
equation

dP (t)
dt

= −pP (t) (33)

and thus P (t) ∝ exp(−pt). Using the previous results, we finally get the scaling
relation:

P (S) ∝ S−2 (34)

in agreement with simulations. By analysing different sources of finite-size effects,
Drossel shows that the previous results are robust for a broad range of parameter
values. The previous analysis can be extended to the general k > 1 problem.
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The previous proof involves the distribution of extinctions per dead species
in the lowest level, let us call it Pds(s). One can also compute the distribution
of extinction sizes per time step, P (s), which is what the fossil record actually
supplies, and adds all the extinctions of the first one along a time step [14]. In this
sense, it is worth to stress that the exponent −2 derived theoretically by Drossel
is related but strictly is not the exponent of the extinction size distribution per
time step, P (s). In order to calculate this second distribution, one has to combine
Pds(s) with the Poisson statistics, Po(l), for the number of extinctions in this
level. Even if one neglects the correlations between one extinction and the next
ones, the resulting expression, namely

P (s) =
s∑

l=1

Po(l)
∑

∑l
j=1 sj=s

Pds(s1)...Pds(sl),

is very cumbersome to deal with analytically, so that, in practice, only numerical
simulations can solve it. If one simulates a Poisson process with Pds ∼ s−2 for
the parameters used in our simulations, one finds the same scaling relation.
Therefore, there is no contradiction between both distributions. In fact, as long
as the average number of dead species per unit time in the lowest level is not
high, if one removal gives rise to a big extinction, it is likely that this is the only
big extinction taking place in that time step, since Pds ∼ s−2 decreases rapidly
with s. Therefore P (s) � Pds(s) ∼ s−2.

One can also estimate the location of the maximum in the extinction distribu-
tion, P (s). We know that when one species in the lowest level dies, the probability
for an extinction of size s scales as s−2. This means that 60% of the extinctions
due to an extinction in the lowest level are of size 1 (since ζ−1(2) � 0.6). Then,
most of the time a species in l = 1 is gone with no further cascade. Now, if N1
denotes the average number of species in the first level at the stationary state,
this implies that most of the time the number of extinctions in a time step will
be � N1p. It is easy to see that N1 ≈ N(1−p/µ), so that for N = 1000, µ = 0.02
and p = 0.01, N1p ≈ %5, meanwhile for the case µ = 0.004 and p = 0.002, one
has N1p ≈ %1. These predictions for the location of the maxima agree well with
numerical simulations, as shown in the last: the maximum is found at s ∼ 5 in
the first case, but it is absent in the second one (figure 13).

5 Discussion

It is generally agreed that species may go extinct because they are unable to
evolve rapidly enough to meet changing circumstances or because their niches
disappear. In the second case, no capacity for rapid evolution could save them
from extinction. Theoretical models have been traditionally based on assump-
tions invoking either individual-based selection/adaptation mechanisms or exter-
nalities such as meteorite impacts. But in both cases the underlying ecological
organization is essentially ignored. Species are effectively isolated entities whose
extinction has little influence on ecosystem functioning (and thus in promoting
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Fig. 13. Scaling in the Amaral-Meyer model. Here we show the distribution of extinc-
tion events for the AM model. The values of the parameters are: µ = 0.02, p = 0.01,
and µ = 0.004, p = 0.002. A maximum is found in the first case, in agreement with the
fossil record (see inset).

further extinctions). But these assumptions are far from true: the trophic nature
of ecological interactions makes a big difference. When a species is gone, its effect
can be very small or very large.

Biotic responses have been of great importance in the past [37] [38] as they
are today in our biosphere. Keystone species are probably an inevitable result
of ecological complexity [28] and in that sense their removal from an ecosys-
tem can have highly nonlinear effects [66]. Such nonlinearity and the high-level
patterns emerging from network dynamics are likely to decouple micro- from
macroevolutionary processes. It is the global features of the food web what mat-
ters, not the specific properties of the species constituting the web. In Bak’s
sandpile metaphor, we cannot understand the sandpile behavior by looking at
gravitation and friction acting on individual grains. Instead, we recognized that
the sandpile at the critical state must be analysed as a collective phenomenon,
since new properties (interactions among grains) are at work. Similarly, natural
selection and adaptation are operating on species in complex ecologies, but the
complete picture requires the consideration of interactions among species. In the
long run, the effects of selection pressures on single species are like gravity and
friction operating on grains of sand: we need to take them into account, but they
cannot explain the avalanches.

The future of this area, in my view, will need to incorporate a detailed un-
derstanding of the information provided by the fossil record at different scales in
space and time. Instead of considering a few sets of large-scale patterns, available
information dealing with evolutionary responses by well-defined groups whould
be taken into account. This is particularly important when looking at recovery
patterns [21] [22] [23]. Recovery patterns provide a unique window to explore
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the structure and evolution of paleoecosystems. Ecological links do not fossilize,
but the underlying structure of ancient food webs can be inferred from the fossil
record. In this context, new models of evolution [67] exploring the responses of
different trophic levels to mass extinctions events will be very useful not only in
order to understand how the biosphere reacted in the past to external challenges,
but also to provide useful insight into the current human-driven mass extinction
event.

The previous models and others not reviewed here (see in particular the work
by Caldarelli et al. [13]) are a first step towards a complete theory of large-scale
evolution. These models are typically non-historic, and in that sense they ignore
some essential ingredients of the true dynamics of biological entities. But they are
able to capture some large-scale trends that other, more detailed approximations
cannot provide without an important loss of real understanding. In spite of their
simplicity, they clearly indicate that such a theory is feasible, if we are able to
go beyond the infinite details provided by the fossil record. As Niles Eldredge
said: “...we should not despair. There is real order in all this apparent chaos.
Life has had a long and complex, but ultimately comprehensible, history. There
are patterns repeated over and over again as new species come and go, and as
ecosystems form and fall apart. These organizing principles of life’s history are
the processes of evolution”.
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14. Camacho, J. and Solé, R. V. Phys. Rev. E 62, 1119-1123 (2000)
15. Chaloner, W. and Hallam, A. (eds) Phil. Trans. R. Soc. London B325, 239-488

(1989)



336 Ricard V. Solé
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