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In both nature and engineering, complex designs can emerge from distributed col-

lective processes. In such cases, the agents involved—whether they are social insects

or humans—have limited knowledge of the global pattern they’re developing. Of course,

insects and humans differ significantly in what the individual agent can know about the 

overall design goals. A social insect, for example,
hasn’t a clue about what it’s contributing to the col-
lective structure and function. In contrast, most soft-
ware engineers working as part of a team understand
their project’s purpose and overall goal. Nonethe-
less, as project complexity increases, individual
developers’ real knowledge of the overall project
rapidly shrinks; decisions become both localized and
constrained by other project developments. The
resulting constraints largely canalize choices, ulti-
mately limiting the possible system-level construc-
tion rules—at least on some scales.

By viewing the complex dynamics of software
development communities as a network of inter-
acting agents involving both goals and constraints,
we can compare them to other social networks and
so build up evidence for basic principles of self-
organization. Understanding these principles offers
a first step toward quantitative reference models to
explain human behavior during open source software
(OSS) development. Once we have such a reference
model, we’ll be able to better manage the software
process because we’ll be able to clearly and quanti-
tatively understand which deviations are important—
and which are not. Such an understanding can ben-
efit both software practitioners and information
society in general. Existing OSS knowledge—which
is based on a few qualitative studies—offers no gen-
eral lessons.

We conducted a comparative study of how social
organization takes place in a wasp colony and OSS
developer communities. Both these systems display
similar global organization patterns, such as hierar-
chies and clear labor divisions. As our analysis
shows, both systems also define interacting agent
networks with similar common features that reflect
limited information sharing among agents. As far as
we know, this is the first research study analyzing
the patterns and functional significance of these sys-
tems’ weighted-interaction networks. By illuminat-
ing the extent to which self-organization is respon-
sible for patterns such as hierarchical structure, we
can gain insight into the origins of organization in
OSS communities.

Two social networks
Complex networks of interacting agents often dis-

play common organization patterns. Such regulari-
ties actually reflect common principles of organiza-
tion1 that are similar to patterns seen in nature.2

Although social insect colonies involve simple agents
with limited means of communication, pattern simi-
larities to complex agent communities provide a basis
for finding simple rules shared by both system types.

Wasp colonies
To uncover a wasp society’s network structure,

we conducted a set of experiments on two Polistes
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dominulus (European paper wasp) colonies.
Within the colonies, we artificially main-
tained a constant number of wasps equal to
Nw = 13. Unlike some wasps, European
paper wasps are a primitively eusocial
species—that is, they cooperate in the care
of young; have a reproductive division of
labor; and have overlapping generations (but
no morphological differences among wasps),
so offspring contribute to colony labor while
their parents are still alive. Given these prim-
itively eusocial characteristics, the wasps’
behavior is flexible: individuals tend to
adopt specialized roles determined by social
interactions.

Hierarchical interactions play a crucial
role in such social interactions, establishing
a hierarchical structure that emerges from
multiple exchanges. When wasps meet, they
adopt either a dominant or submissive role
(see figure 1). The dominance relationship
between pairs of individuals in a colony is
always stable. The entire set of colony pair-
relationships forms a more or less linear hier-
archy (though loops sometimes occur, in
which wasps compete for dominance). Given
this largely linear hierarchy, we can assign
each wasp a particular hierarchical rank
depending on how many wasps dominate it
within the colony. In this particular species,
an individual’s hierarchical rank generally
coincides with its birth order (and thus we
see aging effects—that is, dominant wasps
tend to be older wasps).

In our experiments, we removed top-rank
individuals (�-individuals) in each colony
and studied the subsequent reorganization of
each colony’s activity distribution. Each
week, we removed the wasp occupying the
top of the hierarchy. Seven days appears to
be sufficient for a colony to stabilize a new
hierarchical pattern. Our observation period
lasted for 38 days (five weeks), and we
recorded during two hour-long observation
sessions each day. We observed the wasp’s
behavior visually and recorded data on a
microcomputer with a keyboard customized
for behavioral coding. We recorded all social
contacts between pairs of individuals and
measured the weight of each pair interaction
in terms of the number of (directed) contacts.

Open source software community
Popular metaphors like “the cathedral and

the bazaar” suggest that OSS development’s
distributed and unplanned nature outper-
forms planned schemes, such as proprietary
software development.3 OSS development

advocates have also argued that decentral-
ization leads to a distinctive organization that
solves the communication bottleneck long
associated with large software projects.4

To investigate such claims, we studied an
OSS community’s social network from a
data set describing the email activity of 120
different software teams.5 Our immediate
goal was to understand how decentralization
leads to hierarchies; we ultimately hope to
understand how OSS labor divisions occur.
Our test data originated from Sourceforge
(http://sourceforge.net), a large open source
project repository, and included communi-
ties ranging from very small networks with
one or two members to large networks with
thousands of members.

To determine an individual programmer’s
social position, we examined the email each
programmer submitted to and received from
the group. Because not every email message
has the same influence in the software devel-
opment process, we limited our considera-
tion to email traffic associated with bug fixes
and bug reporting. As other researchers have
shown,5 this email subset allows an effective
reconstruction of the software community’s
social network.

Social network analysis
Social network analysis represents agent

relationships with nodes and links.6 Every
node i represents an actor within the network;
links (i, j) denote social ties between agents
i and j. More representative social network
models augment each link with the social
tie’s strength,7 or the amount of information
flowing through the tie. We refer to this as
link weight (wi,j).

Link weight analysis
The statistical analysis of wi,j between

pairs of vertices in the social network indi-
cates a heterogeneous interaction pattern,
typically following a power law:

P(wi,j) ~ wi,j
–�

where P is the probability of having a link with
weight wi,j. According to this pattern, a few
ties are exploited with orders-of-magnitude-
larger frequencies than many other social
ties. However, researchers have also shown
that weak ties enable fast information prop-
agation in social networks.7 Furthermore,
heterogeneous link weight distribution might
be related to a social network’s hierarchical
organization.7

Study weights. Within the OS community’s
social network, nodes and links (i, j) repre-
sent email communication between members
i to j, respectively. Anytime member i dis-
covers a new software bug, he or she sends a
notification email. Other expert members
then investigate the bug’s origin and eventu-
ally reply with the solution. Typically, sev-
eral messages are required to solve the prob-
lem. Here, Ei,j(t) = 1 if developer i replies to
developer j at time t, or Ei,j(t) = 0 otherwise.
We also define wi,j as the amount of email
traffic flowing from member i to member j:

where T is the software development time
span.

In the wasp colonies’social network, nodes
identify individual wasps and links represent
hierarchical wasp interactions. Link weight
wi,j indicates the number of dominances of
wasp i over wasp j. Our experiments were
limited by colony size. As we now describe,
however, we gathered enough data to observe
significant statistical correlations.

Comparison. Figure 2 compares social net-
works from wasp colonies and software com-
munities, emphasizing link weight distribu-
tions, P(wi,j). Figure 2a, for example, shows
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Figure 1. Hierarchical interaction between
wasps. When wasps meet, they adopt
either a dominant or submissive role, 
creating a self-organizing hierarchy across
the colony.



a social network for a single experiment in a
colony of 13 wasps. To reduce our statistical
data’s noise, we use the cumulative distribu-
tion P>(wi,j), defined as

For the standard case here—in which we
observe a scaling behavior P(wi,j) ~ wi,j

–�—
we have P>(wi,j) ~ wi,j

–� +1.
Figure 2 shows a characteristic pattern of

asymmetric interaction, in which a few strong
wasps dominate the colony’s activity.8 Figure
2b shows a similar pattern for the small soft-
ware community’s social network. Beyond
this qualitative comparison, we find signifi-
cant agreement in the link weight distribution.
To enable a quantitative comparison between
human and wasp societies, we considered the
aggregated link weight distribution P(wi,j) in
12 small software communities with an aver-
age of 10 programmers each. Despite their

small size and obvious differences, a com-
parison of figure 2c and figure 2d shows a sig-
nificant convergence in link weight distribu-
tions between the wasp and small software
communities. Interestingly, the link weight
distribution in large software communities
also follows a power law, with an exponent
consistent with that observed in the small
communities (see figure 3).

Measuring centrality: 
Strength and outdegree

There are limitations to what can we can
understand solely by analyzing link weight
distribution. A more informative system pic-
ture emerges from measuring node impor-
tance, or centrality.9 If, for example, we com-
pute a wasp’s dominance index as the ratio
of the number of dominances (DOM) over
the total number of hierarchical interactions
(DOM + SUB),6 we get a highly reliable
image of the wasp’s hierarchical rank.8

Researchers have conjectured that many
successful OS projects also display a hierar-

chical or onion-like organization. In many of
these communities, core team members con-
tribute most of the code and oversee the proj-
ect’s design and evolution. As Figure 3d
shows, we can identify these core develop-
ers by assuming that members with many
social ties are community leaders. Previous
centrality studies of software communities5

have focused in the node outdegree ki—that
is, the number of social ties outgoing from i.
However, the outdegree might overlook
important (though relatively isolated) mem-
bers who connect separated subteams. We
therefore use node strength,10 si, as the cen-
trality measure for weighted networks:

In software communities, this equals the total
number of emails that developer i sends. In the
wasp colony, node strength coincides with
DOM, so it’s related to the dominance index
used in biological studies of animal hierarchies.

As Figure 3a shows, in software commu-
nities, the distribution of programmer strength
follows a power law P(s) ~ s–�. We can fur-
ther investigate this power law’s origin by
measuring the dependence of node strength
s with outdegree k,10

s(k) ~ k�

When the exponent � = 1, the strength and
outdegree don’t correlate—that is, link
weight wi,j is independent of i and j. In this
case, both the outdegree and strength are
equivalent measures and provide exactly the
same centrality information. In software
communities, however, � is significantly
larger than 1 (see figure 3b), and thus node
strength is a better centrality measure.

Feedback and self-organization
In animal society hierarchies, simple

models of self-organization rely on a basic
positive feedback mechanism, where a sim-
ple multiplicative rule reinforces successful
individuals.8 Similarly, we can define the
probability of a software community’s email
interaction as a function of the total number
of messages sent by interacting developers.
As messages increase, so, too, does the like-
lihood of interaction. Interestingly, in many
real weighted networks, a link’s weight (wi,j)
scales with the product of its end nodes’out-
degrees (kikj).10 In these real weighted net-
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Figure 2. Heterogeneous interaction in wasp experiments and small software 
communities. (a) The network of hierarchical wasp interactions in a colony with 
13 members. (b) Social network of email exchanges between developers in a small
software community. (c) Cumulative distribution P>(wi,j) for a single wasp experiment.
(d) Cumulative distribution P>(wi,j) within 12 small software communities. The tail of
this distribution fits a scaling law, P>(wi,j) ~ wi,j

–� +1, where � � 2.41.



work systems, we measure the dependency
of average link weight with kikj,

For the worldwide airport network and
Escherichia coli’s metabolic network, re-
searchers found that � � 1/2.10 As our previ-
ous discussion implies, the � and � exponents
can be related. Assuming no topological cor-
relations between connected vertices’outde-
grees, � = 1 + �.10 Then, in uncorrelated net-
works, � = 1 and � = 0. By measuring our
data sets’ � exponent, we found � > 0 expo-
nent, thus giving empirical evidence of a
reinforcement mechanism in both our small
wasp colony and large software community
experiments (see figure 4). This is consistent
with the � > 1 exponent measured in the scal-
ing of strength with outdegree.

Comparing figures 4b and 4d suggests dif-
ferent reinforcement mechanisms in wasp
and human hierarchies. In wasp colonies, a
simple scaling law of the individual tenden-
cies’ product explains the average link
weight. To reduce fluctuations and better
capture the scaling exponent, we repeated the
least-squares fitting with logarithmically
binned data. For the wasp data set, we mea-
sured � = 0.36 exponent (figure 4b), which
is consistent with the raw data set’s � = 0.39
exponent (figure 4a). This simple hypothe-
sis doesn’t fit the software community’s data,
which shows strong nonlinearities.

As figure 4d shows, the logarithmically
binned data is relatively flat for roughly two
orders of magnitude, followed by a strong
deviation with large kikj. This pattern is dif-
ficult to see in the raw data set (figure 4c).
Because the deviation is clear for at least two
orders of magnitude, it’s unlikely to result
from noisy data fluctuations. This is a char-
acteristic pattern in many software commu-
nities. The clear deviation suggests a pro-
nounced reinforcement effect between the
community’s strongest members—the core
developers—who have the largest outdegrees
and node strengths (figure 4d).

Exploring communities of interacting
systems through structural analysis of

weighted networks is an open research area
that requires more attention. The framework
we’ve described for social weighted-network
analysis could also play a key role in deter-

mining the mechanisms behind social self-
organization. Sharing collective properties
doesn’t imply the same interaction mecha-
nisms in the underlying organizations. As
we’ve shown, in the OSS development com-
munity, reinforcement mechanisms distin-
guish a few core members. Arguably, these
members might be qualitatively different
from other community members. Selecting
an appropriate model to explain these pat-
terns remains an open research problem. The
recently developed theoretical approaches
for modeling insect societies11 might offer
valuable insight into many dynamic aspects
of OSS software development.

Acknowledgments
We thank Kevin Crowston and James Howison

for making their software data publicly available.
Our work was supported by grants FIS2004-0542;
the EU’s 6th Framework Program, contract 001907
DELIS (Dynamically Evolving Large-Scale Infor-
mation Systems) and 01194 ECAGENTS (Embodied

and Communicating Agents); and the Santa Fe
Institute. Jacques Gautrais was supported by a
European community grant to the Leurre project
under the Information Society Technologies Pro-
gramme’s Future and Emerging Technologies sec-
tion, contract FET-OPEN-IST-2001-35506. 

References
1. R.V. Solé et al., “Selection, Tinkering, and

Emergence in Complex Networks,” Com-
plexity, vol. 8, no. 1, 2002, pp. 20–33.

2. R.V. Solé and B. Goodwin, Signs of Life: How
Complexity Pervades Biology, Basic Books,
2001.

3. E.S. Raymond, “The Cathedral and the Bazaar,”
First Monday, vol. 3, no. 3, 1998; www.
firstmonday.org/issues/issue3_3/raymond.

4. M.E. Conway, “How Committees Invent?”
Datamation, vol. 14, no. 4, 1968, pp. 28–31.

5. K. Crowston and J. Howison, “The Social
Structure of Free and Open Source Software
Development,” First Monday, vol. 10, no. 2,

w k ki j i j, ∼ ( )θ

MARCH/APRIL 2006 www.computer.org/intelligent 39

Link weight

(b)(a)

(d)(c)

10 0 101 102 103

Node strength

100

101

102

103

Cu
m

ul
at

iv
e 

fre
qu

en
cy

100 101 102

101

102

103

Cu
m

ul
at

iv
e 

fre
qu

en
cy

100 101 102

Outdegree

100

102

No
de

 s
tre

ng
th

–0.73

1.22

–1.27

Figure 3. Analysis of a large software community. (a) Cumulative distribution for the
strength P>(s), measured in the Python community, where s is node strength. The line
denotes the least-squares power law fitting P>(s) ~ s–�+1, with exponent � = 1.73. 
(b) Average strength scales with outdegree—that is, s(k) ~ k�, with exponent � = 1.22.
(c) We can approximate the cumulative link weight distribution by a scaling law, P>(wi,j)
~ wi,j

–� +1, with a � � 2.27 exponent. (d) A subgraph of email communication between
the Python community’s strongest developers (that is, those with s > 200 messages).
The image show links between core members only; warmer nodes and links represent
stronger developers and frequent email communications, respectively.



2005; www.firstmonday.dk/ISSUES/issue10_2/
crowston/index.html.

6. L. Pardi, “La ‘Dominazione’e il Ciclo Ovario
Annuale in Polistes Gallicus (L.),” Ricerche
sui Polistini VII, Boll. Ist. Entom, Univ.
Bologna, vol. 15, 1946, pp. 25–84.

7. M.S. Granovetter, “The Strengh of Weak
Ties,” Am. J. Sociology, vol. 78, no. 6, 1973,
pp. 1360–1380.

8. G. Theraulaz, E. Bonabeau, and J.-L.
Deneubourg, “Self-Organization of Hierar-
chies in Animal Societies,” J. Theorical Biol-
ogy, vol. 174, 1995, pp. 313–323.

9. S. Wasserman and K. Faust, Social Network
Analysis, Cambridge Univ. Press, 1994.

10. A. Barrat et al., “The Architecture of Com-
plex Weighted Networks,” Proc. Nat’l Acad-
emy of Science, vol. 101, no. 11, 2004, pp.
3747–3752.

11. S. Camazine et al., Self-Organization in Bio-
logical Systems, Princeton Univ. Press, 2001.

S e l f - M a n a g i n g  S y s t e m s

40 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Sergi Valverde is a
researcher in the Com-
plex Systems Lab at
the University Pompeu
Fabra, Barcelona, and a
doctoral student in ap-
plied physics and sim-
ulation in science at
the Polytechnic Uni-

versity of Catalonia. His research focuses on
complex networks and biologically based mod-
eling of artificial systems, including the Internet
and software systems. He received an MhD 
in computer science from Polytechnic Uni-
versity of Catalonia in 1999. Contact him at
svalverde@imim.es; http://complex.upf.es/~sergi.

Guy Theraulaz is a
senior research fellow
at the Centre National
de la Recherche Sci-
entifique in Toulouse,
where he heads the Re-
search Center on Ani-
mal Cognition’s research
group on Collective

Behaviours in Animal Societies. His research
interests include collective decision making and
building behavior in social insects and distrib-
uted adaptive algorithms inspired by social
insects. He received a PhD in neurosciences and
ethology from the Provence University, Mar-
seille, France. In 1996, he was awarded the Cen-
tre National de la Recherche Scientifique’s
bronze medal for his work on swarm intelli-
gence. Contact him at theraula@cict.fr; http://
cognition.ups-tlse.fr/~theraulaz.

Jacques Gautrais is
currently a researcher at
the Research Center on
Animal Cognition’s re-
search group on Collec-
tive Behaviours in Ani-
mal Societies at the
University Paul Sabatier
in Toulouse, France. His

research focuses on modeling self-organized col-
lective coordination in animals, such as school-
ing, behavioral synchronization, and unsuper-
vised building. He received a PhD in cognitive
sciences from the Ecole des Hautes Etudes 
en Sciences Sociales (EHESS). Contact him at
gautrais@cict.fr.

Vincent Fourcassié is
a research associate with
the French Centre Na-
tional de la Recherche
Scientifique and works
at the Paul Sabatier Uni-
versity's Research Center
on Animal Cognition.
His research interests are

in orientation and decision making in animal soci-
eties. He received a PhD in biology from the Uni-
versity of Toulouse. Contact him at fourcass@
cict.fr.

Ricard V. Solé is a
research professor at
the Universitat Pompeu
Fabra, Barcelona, where
he is the head the Insti-
tut Català per la Recerca
i els Estudis Avançats
(ICREA)-Complex Sys-
tems Lab. He is also an

external professor at the Santa Fe Institute and
senior member of Madrid's NASA-associated
Astrobiology Center. He received a PhD in physics
from Polytechnic University of Catalonia. Con-
tact him at ricard.sole@upf.edu; http://complex.
upf.es/~ricard.

T h e  A u t h o r s

(d)(c)

101 102 103 104
100

101

210

Av
er

ag
e 

lin
k 

w
ei

gh
t

101 102 103 104 105

Outdegree product

100

101

102

103

Av
er

ag
e 

lin
k 

w
ei

gh
t

0 1 2 3 4

0 1 2 3 4

0

0.5

1.0

1.5

Lo
ga

rit
hm

 o
f a

ve
ra

ge
 li

nk
 w

ei
gh

t

5

Logarithm of outdegree product

(b)(a) Outdegree product Logarithm of outdegree product

0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ga

rit
hm

 o
f a

ve
ra

ge
 li

nk
 w

ei
gh

t

0.39

0.36

0.36
1.14

Figure 4. Dependence of link weight wi,j with the product of outdegrees kikj measured
in an ensemble of small wasp colonies and a large software community. (a) In the five
stabilized wasp patterns, least squares fitting of <wi,j> ~ (kikj)� yields an exponent � �
0.39. (b) The same five patterns with logarithmically binned data to reduce fluctuations.
The resulting scaling exponent, 0.36, is consistent with (a). (c) In the Python software
project, the average link weight and kikj correlate. The straight line with slope 0.36 is
the exponent for the power law fitting of the whole dataset, which shows fluctuations.
(d) The Python project’s logarithmically binned data is initially almost flat, followed by
a persistent deviation. The dependence of average link weight with large outdegree
product fits the exponent � � 1.14, indicating strong correlations between highly 
connected nodes.


