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Field theory for a reaction-diffusion model of quasispecies dynamics
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RNA viruses are known to replicate with extremely high mutation rates. These rates are actually close to the
so-called error threshold. This threshold is in fact a critical point beyond which genetic information is lost
through a second-order phase transition, which has been dubbed as the ‘‘error catastrophe.’’ Here we explore
this phenomenon using a field theory approximation to the spatially extended Swetina-Schuster quasispecies
model@J. Swetina and P. Schuster, Biophys. Chem.16, 329~1982!#, a single-sharp-peak landscape. In analogy
with standard absorbing-state phase transitions, we develop a reaction-diffusion model whose discrete rules
mimic the Swetina-Schuster model. The field theory representation of the reaction-diffusion system is con-
structed. The proposed field theory belongs to the same universality class as a conserved reaction-diffusion
model previously proposed@F. van Wijlandet al., Physica A251, 179 ~1998!#. From the field theory, we
obtain the full set of exponents that characterize the critical behavior at the error threshold. Our results present
the error catastrophe from a different point of view and suggest that spatial degrees of freedom can modify
several mean-field predictions previously considered, leading to the definition of characteristic exponents that
could be experimentally measurable.

DOI: 10.1103/PhysRevE.64.051909 PACS number~s!: 87.10.1e, 02.50.2r, 64.60.Ak
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I. INTRODUCTION

RNA viruses offer a unique opportunity for explorin
long term evolution under controlled conditions due to th
high mutation rates@1,2#. Their evolutionary success is to
large extent due to their small-sized genomes, but spec
to their enormous plasticity and adaptability to changing
vironment @3#. These viruses display the highest possi
mutation rates and, as a consequence, their populations
so-calledmolecular quasispecies@4#, are extremely hetero
geneous. The quasispecies structure has numerous imp
tions for the biology of viruses. The most relevant of them
that mutant swarms are reservoirs of variants with potenti
useful phenotypes in the face of environmental change.
extremely simplified entities at the border of a lifelike sta
they are specially apt to mathematical modeling@5,6#.

Replication of these molecules implies two basic re
tions @4,7#: ~i! error-free copy, when a~molecular! speciesI i
replicates by using available monomers (A), i.e.,

~A!1I i →
AiQi

2I i , ~1!

and ~ii ! mutation

~A!1I i→
C i j

I i1I j ~ i 5” j !. ~2!

The parametersAi and Qi are the replication rate and th
quality factor, respectively.QiP@0,1# is a measure of the
correctness of the replication process, and it is maxim
(Qi51) if no mutations occur.C i j are the mutation rate
that can lead to transitions between speciesj→ i .

The standard approach to the quasispecies dynamic~in
the limit of very large populations! is based on the continu
1063-651X/2001/64~5!/051909~7!/$20.00 64 0519
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ous Eigen model@4#. Here a set of molecules that can rep
cate and mutate is considered. The basic equations are

dxi

dt
5~AiQi2Di !xi1(

j 5” i
C i j xj1F i , ~3!

where xi , with i 51,2, . . . ,n, accounts for the population
size of each species,Di stands for spontaneous degradati
of molecules~assumed to be linear!, and F i is an outflow
term that takes into account the removal of molecules fr
the system. If we introduce the constraint of constant po
lation size,( ixi5 const, the previous equations read

dxi

dt
5~AiQi2Di2Ē!xi1(

j 5” i
C i j xj , ~4!

where the mean value of the so-called excess productiv
Ei5Ai2Qi , is given byĒ5( i(Ai2Di)xi /( j xj .

One of the most important results of Eigen’s theory w
the finding that a phase transition takes place when muta
rates are tuned. Specifically, let us assume for simplicity t
each species is composed of a string of eleme
$S1 , . . . ,Sn% of sizen @8#. We consider, in total, a popula
tion of N strings. A particular kind of sequences, compos
of the elements$S1

(0) , . . . ,Sn
(0)%, represent the correct ge

nomic sequences of the species, and is called themaster
sequence. Each time a string is chosen to be replicated
does so with some sequence-dependent probabilityr i
5P($Si%). If replication occurs, each unit can mutate wi
probability m, and reproduce exactly with probability 12m.
Mutation introduces disorder into the system, and it can
shown that a well-defined mapping exists between repl
tion dynamics and the two-dimensional Ising model in suc
way that the temperature is given byT'2u ln@m/(12m)#u
©2001 The American Physical Society09-1
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@9–11#. For smallm the replication system reaches a stea
state in which the probability of observing the master
quence is finite. On the other hand, for values ofm larger
than a given threshold, the probability of observing the m
ter sequence is vanishing small.

Eigen’s theory predicts that genetic information becom
lost for mutation rates higher than the critical ratemc , due to
a breakdown of heredity and the lack of selection—the
called ‘‘error catastrophe.’’ It has been shown that this p
nomenon indeed occurs in RNA viruses, which replic
close to the error threshold@3#. Actually, experimental data
reveal that real viruses have mutation ratesm'1/n, that is,
inversely proportional to the size of the genomic conte
consistently with the prediction, and this has led to the cla
that increased mutation rates might be able to bring v
populations into extinction. Such a strategy has been rece
shown to holdin vitro and is likely to be feasiblein vivo
@12#.

The presence of a critical mutation rate allows to interp
the error catastrophe in the framework of stand
absorbing-state phase transitions~APT! @13,14#. APT are a
class of nonequilibrium transitions in which, by the variati
of a control parameter, the system crosses from an ac
phase with everlasting activity, to an absorbing phase
which the system remains trapped forever, with no possi
ity to escape. In the framework of species replication w
mutation, the active phase is identified with the low mutat
regime, while the absorbing phase corresponds to the
mutation regime. Most APT are phase transitions of sec
order. If we characterize the system by an appropriate o
parameterc, which in this case corresponds to the density
master sequences in the system, by tuning the parametm
we observe the typical behavior

c50 for m.mc ,

c.~mc2m!b for m,mc ,

close to the critical pointmc . The previous expression serve
to define the critical exponentb. The analogy with error
catastrophe is in this sense clear: for mutation rates la
than the error threshold, the virus is inviable and it quick
dies. For small mutation rates the virus is able to survive
reaches viable populations whose size is an increasing f
tion of mc2m. Further extending the analogy with APT, w
can consider the spatial and time dependence of the o
parameterc, and define the correlation functiong(r ,t)5
,c(r 8,t8)c(r 81r ,t81t)., where the bracket denote ave
ages over different realizations of the system. According
the dynamic scaling ansatz@15#, we expect to observe clos
to the error threshold the behavior

g~r ,t !5r 2(d1h)FS r

j
,

t

jzD , ~5!

which defines the correlation lengthj, related to the distance
to mc by

j;2~mc2m!n'. ~6!
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Equations~5! and ~6! define the new critical exponentsh,
n' , and z, which determine the scaling of the correlatio
function with respect to changes in the mutation ratem.

Based on the previous analogy, in this paper we prop
to study the phenomenon of the error catastrophe from
point of view of an APT by analyzing a reaction-diffusio
model, which captures the essence of the replication-p
mutation mechanism of quasispecies dynamics. The mo
allows the construction of an associated field theory, rep
sentative of the same universality class, following a stand
technique outlined in the work of Doi and co-workers@16–
19#. The field theory developed here is shown to correspo
to a conserved reaction-diffusion model previously propo
by van Wijlandet al. @20# ~see also Ref.@21#!, in which the
critical exponents were obtained performing a one-lo
renormalization group analysis.

An important aspect, seldom considered in previous st
ies, is the effect of spatial degrees of freedom in quasispe
models. An exception is Adami’s work on artificial life sys
tems, in which a set of replicating bit strings of code spre
on a two-dimensional lattice@22#. Under appropriate condi
tions, it was shown that the population spontaneou
evolves to the error threshold, although no characteriza
of the model behavior at this critical point was performe
Besides, only a few experimental studies have recently
ported the presence of several patterns of virus distribu
that cannot be explained in terms of spatially implicit qu
sispecies dynamics@23,24#.

The interest in this problem is twofold: On the one han
virus populations show heterogeneity in space, thus introd
ing further complexity in quasispecies dynamics and crea
new opportunities to viral evolution. On the other hand,
would be important to know if spatially extended, mean-fie
models, are appropriate descriptions of the real quasispe
dynamics in space. Although RNA fitness landscapes
known to be rugged@25,26#, here we consider the simples
single-sharp-peak landscape@27#. This model has been use
as a null model of quasispecies populations and a field the
of the reaction-diffusion rules can be developed.

The paper is structured as follows. In Sec. II we propo
in analogy with the Swetina-Schuster model@27,28# a
streamlined reaction-diffusion model that captures the m
mal elements in the reproduction/mutation mechanism
quasispecies dynamics. Section III reports a mean-fi
analysis, which allows to pinpoint the key parameters of
model. In Sec. IV we construct the field theory correspon
ing to the model. In analogy with the analysis performed
van Wijland et al. and Kreeet al. @20,21#, we obtain the
relevant critical exponents. Finally, we interpret our resu
and put forward several experimental applications of them
Sec. V.

II. REACTION-DIFFUSION MODEL

The key ingredient of our model consists in the assum
tion that one of the sequencesB[I m has a high replication
rate, whileall the othersA[I j 5” m have the same, lower rep
lication rate. The first sequence is called the master sequ
and this approximation defines the so-called Sweti
9-2
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FIELD THEORY FOR A REACTION-DIFFUSION MODEL . . . PHYSICAL REVIEW E 64 051909
Schuster model@27#. Second, by assuming that the s
quences are long enough~consistently with real RNA vi-
ruses, wheren.104), backward mutations fromA to B can
be neglected@29#.

In order to propose the reaction steps defining the mo
we consider a simplified version of the Swetina-Schus
model ~see Ref.@28#, and references therein!. In this model,
a population ofN strings of sizen evolves by a mechanism
of replication with errors. Each string is defined by a s
quenceS1 , . . .Sn , with Si5$0,1%. At each time step, we
select a string and replicate it, after removing another str
chosen at random. The replication takes place with proba
ity 1 for the master sequence, defined bySi51; i , and with
probability p,1 for the rest. The replication procedure r
places each elementSi of the string forSi85Si with prob-
ability 12m, and forSi85(Si11) mod 2 with probability
m. This version of the model shows in plain view the e
ementary steps of the error catastrophe: replication of
master sequence at a certain rate, mutation of the ma
sequence, and lack of backward mutation, for sufficien
large sequence length. Another important ingredient in
model to be remarked is the implicit constraint of const
number of sequences, realized in the random deletion s
and which is usually implemented in the quasispecies a
lytical models@4#. The model described in Ref.@28# seems to
display all the features of the error catastrophe.

Using this simple framework, we can translate the dyna
ics of the Swetina-Schuster model at a microscopic leve
terms of reactions among particles of typeB and A, corre-
sponding to the master sequence and the mutants, res
tively. The simplified model in Ref.@28# implicitly intro-
duces interactions among sequences, by means of
random deletion step. Thus, our reaction-diffusion mo
considers all the possible binary reactions between parti
of typeB andA, that are compatible with the outcome of th
rules used in@28#. The set of reactions that we consider is

B1B→
m

B1A, ~7a!

B1A →
12m

B1B, ~7b!

A1B→
l

A1A. ~7c!

The steps represent the replication/mutation of the first s
cies, coupled with the random deletion of the second spec
Thus, the reaction~7a! implements the replication with mu
tation of a master sequenceB, which happens with an effec
tive mutation ratem, coupled to the random deletion of
sequence of typeB; the reaction~7b! represent the exac
replication of a master sequence, at rate 12m, with the de-
letion of aA sequence; finally, the reaction~7c! stands for the
exact replication of a sequenceA, at ratel, together with the
deletion of a master sequence. All the remaining binary
actions with replication/mutation plus random deletion
not alter the total number of particles, and are thus not c
sidered. The proposed set of reactions mimic the conse
nature of the model imposed by the random deletion of
05190
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quences in Ref.@28#, in a more natural way than in the orig
nal quasispecies model, Eq.~3!, in which one had to impose
an external flow termF i in order to ensure conservation.

The set of equations~7! constitutes the core of our mode
Spatial effects are taken into account by allowing the diff
ent particles to diffuse with respective diffusivitiesDA and
DB @30#.

Given the interpretation of the different particles, it
natural to considerDA5DB , that is, both master sequenc
and mutants diffuse with the same speed. However, for
sake of completeness, we will develop the formalism w
DA5” DB , and make them equal only as a last step.

III. MEAN-FIELD ANALYSIS

In order to gain some preliminary intuition on the beha
ior of the model, we analyze it by applying a standard me
field analysis. Let us denote byrB and rA the densities of
speciesB and A, respectively. Since the reactions~7! con-
serve the number of particles, the total densityrB1rA is
constant in time:

rB1rA5r. ~8!

The classic~mean-field! equations for the densitiesrB and
rA are readily found to be

]rB

]t
5~12l2m!rBrA2mrB

2 , ~9a!

]rA

]t
52~12l2m!rBrA1mrB

2 . ~9b!

Combining this with the conservation condition~8! we ob-
tain a single equation for the densityrB of master sequences

]rB

]t
5~12l2m!rrB2~12l!rB

2 . ~10!

This equation has two stable stationary states, dependin
the value ofm:

rB50 for m.12l, ~11!

rB5
12l2m

12l
r for m,12l. ~12!

At the mean-field level we observe the presence of a stan
absorbing-state phase transition at a critical pointmc51
2l. In the subcritical regime,m.mc , the order paramete
~in this case the density of master sequences! vanishes; in the
supercritical region,m,mc , the order parameter has
power-law dependence onm

rB.~mc2m!b, ~13!

which defines the critical exponentb in the mean-field ap-
proximation,bMF51. As we will see in the following sec-
tion, the presence of fluctuations will change the value ob
at the relevant, experimental, dimensions. A very interest
9-3
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property of this conserved reaction-diffusion~RD! model is
that the critical point is independent of the total particle de
sity r, and is given as a function only of the reproducti
ratel. This situation should be compared with the conser
tive RD systems proposed so far, in which the total parti
density plays the role of the tuning parameter, and mus
tuned to a critical densityrc in order for the system to dis
play critical behavior@20,31#.

The mean-field solution also provides the expression
the probabilityP that there is at least one master sequenc
the steady-state regime@32#

P5Q~mc2m!, ~14!

whereQ is the Heaviside function.

IV. FIELD THEORY

Our model consists in a set of particles of typeB and A
diffusing in a hypercubic lattice of mesh sizeh and sizeL,
that interact probabilistically according to the rules~7! when-
ever they meet at the same lattice site. The dynamics of
model is defined through a master equation for the proba
ity P($n%,$m%,t) of having a particle configuration
$n%, $m% of particlesB andA, respectively, at timet. The
configuration$n%5$n1 ,n2 , . . . ,nLd% represents the occupa
tion number of each node in the lattice. The master equa
for P is

]

]t
P~$n%,$m%,t !

5
DB

h2 (
i , j

@~nj11!P~ . . . ni21,nj11, . . . ,$m%,t !

2ni P~$n%,$m%,t !# ~15a!

1
DA

h2 (
i , j

@~mj11!P~$n%, . . .mi21,mj11, . . . ,t !

2mi P~$n%,$m%,t !# ~15b!

1m(
i

@~ni11!ni P~ . . . ni11, . . .mi21, . . . ,t !2ni

3~ni21!P~$n%,$m%,t !# ~15c!

1~12m!(
i

@~ni21!~mi11!P~ . . . ,ni21, . . . ,mi

11, . . . ,t !2nimi P~$n%,$m%,t !# ~15d!

1l(
i

@~ni11!~mi21!P~ . . . ,ni11, . . . ,mi21, . . . ,t !

2nimi P~$n%,$m%,t !#, ~15e!

whereDB andDA are the diffusion coefficients forB andA
particles,i is summed over all the lattice sites, andj over the
05190
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nearest neighbors of the sitei. The first two terms in the
right-hand side of Eq.~15! implement diffusion through a
random hopping of particles between nearest neighbor s
The initial condition P($n%,$m%,0) is given by a Poisson
distribution, with an average density per site equal for b
types of particles.

The next step consists in recasting the master equa
into a ‘‘second quantized’’ form, following the procedur
described by Doi and co-workers@16–19#. We introduce two
sets of annihilation and creation operators at each lattice
b̂i andb̂i

† for B particles, andâi andâi
† for A particles, which

fulfill the standard commutation rule

@ âi ,â j
†#5@ b̂i ,b̂ j

†#5d i j . ~16!

With this commutation rule, the operators have a boso
character, that is natural given the multiple occupancy
sites allowed in the model. With the help of the vacuum st
u0&, defined byâi u0&5b̂i u0&50, we construct an orthonor
mal basis of statesun,m&, defined by

un,m&5)
i

~ b̂i
†!ni~ âi

†!miu0&, ~17!

and work in the Fock space spanned by this basis. In term
this Fock space, the state of the system at timet is repre-
sented by the vector stateuP(t)&, defined as

uP~ t !&5 (
$n%,$m%

P~$n%,$m%,t !un,m&. ~18!

In terms of this vector state, the master equation, Eq.~15!,
can be rewritten as a Schro¨dinger equation in imaginary time

]

]t
uP~ t !&52ĤuP~ t !&, ~19!

with a Hamiltonian, or time-evolution operator,Ĥ defined by

Ĥ5(̂
i j &

FDA

h2
~ âi

†2â j
†!~ âi2â j !1

DB

h2
~ b̂i

†2b̂ j
†!~ b̂i2b̂ j !G

~20!

1m(
i

~ b̂i
†2âi

†!b̂i
†b̂i

21~12m!(
i

~ âi
†2b̂i

†!b̂i
†b̂i âi

1l(
i

~ b̂i
†2âi

†!âi
†b̂i âi . ~21!

Equation~19! can be formally solved in terms of the operat
Ĥ yielding

uP~ t !&5exp~2Ĥt !uP~0!&. ~22!

From this solution, it is possible to derive all the statistic
properties of the RD system, applying a projection techniq
@16–19#. For practical purposes, it is convenient to map t
second-quantized form into a field theory, using a coher
state representation. Performing a time slicing of the evo
9-4
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tion operator in Eq.~22!, via the Trotter formula, we can
express the vector stateuP(t)& as a path integral, weighte
with the exponential of an actionS, over a set of classica
fieldsa* , a, b* , andb, which are related to the two types o
particles. After taking the continuum limit (h→0), the vec-
tor state can be written as the path integral over space
time dependent fields

uP~ t !&5E DaDa* DbDb* exp~2S@a,a* ,b,b* # !uP~0!&,

~23!

where the actionS has the form@33#

S@a,a* ,b,b* #

5E ddxE dt$a* @] t2DA¹2#a1b*

3@] t2DB¹2#b1m~b* 2a* !b* b21~12m!

3~a* 2b* !b* ab1l~b* 2a* !a* ab%.

Within this formalism, we can compute the average value
any observableF($n%,$m%) performing the path integral

^F~ t !&5CE DaDa* DbDb* F~a,b!exp~2S@a,a* ,b,b* # !,

~24!

whereC is an appropriate normalization constant.
The final step in the derivation of the field theory consi

in performing the shift

a* 511ā, b* 511b̄, ~25!

and the change of variables

c5b, f5a1b2r,

c̄5b̄2ā, f̄5ā. ~26!

The final action describing the RD system is

S@c,c̄,f,f̄#5E ddxE dt$c̄@] tc2DB¹2c2rc

1g1c22g2cf#1f̄@] tf2DA¹2f1g¹2c#

1c̄2@2g3c2v1cf1v2c2#

1c̄f̄@2g4c2v3cf1v4c2#%, ~27!

where we have defined the coupling constants

r 5g45~12l2m!r,

g15v4512l,

g25v3512l2m,

g35rv15~12m!r,
05190
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g5DA2DB .

The coupling constantsr, g, gi , and v i are coarse-grained
versions of the microscopic reaction rates. Since we are o
interested in the behavior of the system close to a crit
point, however, the actual value of these parameters is ir
evant@20,21#.

A naive power counting shows that the critical dimensi
of this field theory isdc54, and that the coupling constan
v i are irrelevant, and can be, in principle, discarded. W
this final form, it is easy to recognize that the action~27!
represents the same field theory analyzed by van Wijl
et al. for the conserved reaction-diffusion model

B1A→2B,

B→A.

In their study, the authors worked out the renormalizat
group analysis for this system, for both cases:DA,DB and
DA5DB , providing the critical exponents up to a one-loo
expansion. The caseDA5DB , which also corresponds to th
universality class of a model of population dynamics w
pollution described by Kreeet al. @21#, is the relevant one in
the problem under consideration. Quoting the results of R
@20,21#, we have the critical exponents

b512
«

32
, ~28a!

n'5
1

22«/2
, ~28b!

h52
«

8
, ~28c!

z52, ~28d!

where«542d gives the dimensionality of the system. Th
results forn' andz are exact, derived field theoretically b
analyzing the symmetries of the action~27!, and are thus
valid for all dimensions. The values ofb andh, on the other
hand, and expansions around«50, and thus they are ex
pected to hold only for small values of«.

In view of the results~28!, the relevant exponents at th
physical dimensiond53 are

n'52/3, z52,

b.0.969, h.20.125. ~29!

The values ofn' and z are exact, while those forb and h
represent an approximation given by the replacement of
small parametere for 1. In dimensiond52 or less, the ex-
ponents~28! have to be taken with a grain of salt, due to t
termsv i in Eq. ~27!, which might become relevant at low
dimensions@20#.
9-5
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V. DISCUSSION

The dynamical theory of molecular evolution develop
by Eigen and Schuster reveals the presence of an intrin
sharp limit to molecular information carriers. This thresho
is a generic feature of replicator systems involving reprod
tion and mutation. The Eigen-Schuster theory predicts t
under the effect of evolutionary pressures selecting for h
variability, such replicators will evolve towards the err
threshold. This is the case of RNA viruses and experime
evidence clearly supports this theoretical prediction.

Previous theoretical models have analyzed the stocha
dynamics of quasispecies under different approaches. Bu
of them considered spatially implicit models~mean-field-
like!, paying no attention to local effects derived from i
complete mixing. Here we have explored this problem us
the simplest quasispecies model, described by a single-sh
peak replication landscape. The aim of our study was to
how the statistical behavior of a spatially extended molecu
replication system would differ from the mean-field pred
tions.

We have considered a simplified reaction-diffusion mo
where two types of ‘‘particles’’~the master sequence and t
mutant sequences! diffuse, replicate, and mutate on a give
spatial domain. Applying the standard approach
absorbing-state phase transitions, a field theory has bee
veloped and it has been shown to be the same reporte
Wijland et al. @20# and Kreeet al. @21#.

The main message from our study is that relevant diff
ences between mean-field models and real dynamics are
pected to be observed even in the simplest scenario con
ered here. Larger deviations should be expected in m
realistic models incorporating a better description of mole
lar replicators and their dynamics. In particular, the sha
n
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ness of the transition~as defined by theb exponent! is not
very different at different dimensions. This suggests that
measurable differences should be expected to be observ
experimental systems. The correlation exponentn' , how-
ever, does change appreciably fromn'(d51)52 to n'(d
53)52/3 thus leading to a faster decorrelation at realis
dimensions. Such an increase inn' will enhance the coex-
istence of different strains~quasispecies! in a given spatial
domain @34# and thus the probabilities of success for t
virus.

Several caveats of this approach are worth mentioning
is known that real RNA viruses have actually multipeak
landscapes@25,26#. We will expand our analysis to such situ
ation in a future work~although the associated field theor
constructed in terms of several particles of typeBi , each one
representing a different viable master sequence, is expe
to be much harder to develop and analyze!. However, in
many situations the quasispecies are observed to be con
in a fitness peak, so that our previous analysis essent
holds@25,26#. Also, the real RNA virus dynamics takes plac
through a virus-cell interaction not considered here, wh
several previous theoretical models used in order to un
stand well-defined experimental results~where a cell popu-
lation was present! have been shown to be successful in p
viding a full understanding of the evolutionary dynamics
RNA populations@35,36#.
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