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Field theory for a reaction-diffusion model of quasispecies dynamics
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RNA viruses are known to replicate with extremely high mutation rates. These rates are actually close to the
so-called error threshold. This threshold is in fact a critical point beyond which genetic information is lost
through a second-order phase transition, which has been dubbed as the “error catastrophe.” Here we explore
this phenomenon using a field theory approximation to the spatially extended Swetina-Schuster quasispecies
model[J. Swetina and P. Schuster, Biophys. Ch&6).329(1982], a single-sharp-peak landscape. In analogy
with standard absorbing-state phase transitions, we develop a reaction-diffusion model whose discrete rules
mimic the Swetina-Schuster model. The field theory representation of the reaction-diffusion system is con-
structed. The proposed field theory belongs to the same universality class as a conserved reaction-diffusion
model previously proposef. van Wijlandet al, Physica A251, 179 (1998]. From the field theory, we
obtain the full set of exponents that characterize the critical behavior at the error threshold. Our results present
the error catastrophe from a different point of view and suggest that spatial degrees of freedom can modify
several mean-field predictions previously considered, leading to the definition of characteristic exponents that
could be experimentally measurable.

DOI: 10.1103/PhysReVE.64.051909 PACS nuner87.10+e, 02.50-r, 64.60.Ak

[. INTRODUCTION ous Eigen modefl4]. Here a set of molecules that can repli-
cate and mutate is considered. The basic equations are
RNA viruses offer a unique opportunity for exploring dx
long term evolution under controlled conditions due to their A _
high mutation rate$l,2]. Their evolutionary success is to a ar -~ (AQ Di)xi+§i VX + @i, ©
large extent due to their small-sized genomes, but specially
to their enormous plasticity and adaptability to changing enwhere x;, with i=1,2,...n, accounts for the population
vironment [3]. These viruses display the highest possiblesize of each specie®); stands for spontaneous degradation
mutation rates and, as a consequence, their populations, teé molecules(assumed to be linegrand ®; is an outflow
so-calledmolecular quasispeciest], are extremely hetero- term that takes into account the removal of molecules from
geneous. The quasispecies structure has numerous implidke system. If we introduce the constraint of constant popu-
tions for the biology of viruses. The most relevant of them islation size,=;x;= const, the previous equations read
that mutant swarms are reservoirs of variants with potentially dx
useful phenotypes in the face of environmental change. As N AA D _Fy. v
extremely simplified entities at the border of a lifelike state, dt (AQi~D; E)x|+12£i ViiX @
they are specially apt to mathematical modelibgp]. o
Replication of these molecules implies two basic reacWhere the mean value of the so-called excess productivity,

tions[4,7]: (i) error-free copy, when émoleculay specied; E;=A—Q;, is given byEin(Ai— Di)Xi/Zix;.

replicates by using available monomers)(i.e., One of the most important results of Eigen’s theory was
the finding that a phase transition takes place when mutation
P rates are tuned. Specifically, let us assume for simplicity that
(A)+1i— 215, 1) each species is composed of a string of elements
. . {S;, ...,S,} of sizev [8]. We consider, in total, a popula-
and (i) mutation tion of N strings. A particular kind of sequences, composed
v, of the elementgS{”, ... ,S{%}, represent the correct ge-
(A)+1i—1i+1; (i#]). 2 nomic sequences of the species, and is calledntlaster

sequenceEach time a string is chosen to be replicated, it

The parameterd\; and Q; are the replication rate and the does so with some sequence-dependent probability
quality factor, respectivelyQ;e[0,1] is a measure of the =P({S}). If replication occurs, each unit can mutate with
correctness of the replication process, and it is maximunprobability x, and reproduce exactly with probability-Jw.
(Qi=1) if no mutations occur¥;; are the mutation rates Mutation introduces disorder into the system, and it can be
that can lead to transitions between spegies. shown that a well-defined mapping exists between replica-

The standard approach to the quasispecies dynafimcs tion dynamics and the two-dimensional Ising model in such a
the limit of very large populationss based on the continu- way that the temperature is given Bys —|In[ w/(1— )]
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[9-11]. For smallu the replication system reaches a steadyEquations(5) and (6) define the new critical exponents,
state in which the probability of observing the master se-v, , and z, which determine the scaling of the correlation
qguence is finite. On the other hand, for valueswotarger  function with respect to changes in the mutation rate
than a given threshold, the probability of observing the mas- Based on the previous analogy, in this paper we propose
ter sequence is vanishing small. to study the phenomenon of the error catastrophe from the
Eigen’s theory predicts that genetic information becomegoint of view of an APT by analyzing a reaction-diffusion
lost for mutation rates higher than the critical ratg, due to  model, which captures the essence of the replication-plus-
a breakdown of heredity and the lack of selection—the somutation mechanism of quasispecies dynamics. The model
called “error catastrophe.” It has been shown that this phe-allows the construction of an associated field theory, repre-
nomenon indeed occurs in RNA viruses, which replicatesentative of the same universality class, following a standard
close to the error threshol®]. Actually, experimental data technique outlined in the work of Doi and co-workéfi6—
reveal that real viruses have mutation rates 1/v, that is,  19]. The field theory developed here is shown to correspond
inversely proportional to the size of the genomic contentto a conserved reaction-diffusion model previously proposed
consistently with the prediction, and this has led to the clainby van Wijlandet al.[20] (see also Ref21]), in which the
that increased mutation rates might be able to bring virugritical exponents were obtained performing a one-loop
populations into extinction. Such a strategy has been recentignormalization group analysis.
shown to holdin vitro and is likely to be feasiblén vivo An important aspect, seldom considered in previous stud-
[12]. ies, is the effect of spatial degrees of freedom in quasispecies
The presence of a critical mutation rate allows to interpreimodels. An exception is Adami’'s work on artificial life sys-
the error catastrophe in the framework of standardems, in which a set of replicating bit strings of code spread
absorbing-state phase transitio&PT) [13,14. APT are a on a two-dimensional latticE22]. Under appropriate condi-
class of nonequilibrium transitions in which, by the variationtions, it was shown that the population spontaneously
of a control parameter, the system crosses from an activevolves to the error threshold, although no characterization
phase with everlasting activity, to an absorbing phase, if the model behavior at this critical point was performed.
which the system remains trapped forever, with no possibilBesides, only a few experimental studies have recently re-
ity to escape. In the framework of species replication withported the presence of several patterns of virus distribution
mutation, the active phase is identified with the low mutationthat cannot be explained in terms of spatially implicit qua-
regime, while the absorbing phase corresponds to the higsispecies dynamid3,24.
mutation regime. Most APT are phase transitions of second The interest in this problem is twofold: On the one hand,
order. If we characterize the system by an appropriate orderirus populations show heterogeneity in space, thus introduc-
parametex), which in this case corresponds to the density ofing further complexity in quasispecies dynamics and creating
master sequences in the system, by tuning the parameter new opportunities to viral evolution. On the other hand, it

we observe the typical behavior would be important to know if spatially extended, mean-field
models, are appropriate descriptions of the real quasispecies
=0 for pu>p, dynamics in space. Although RNA fithess landscapes are
known to be rugged25,26], here we consider the simplest,
Y=(u.—p)? for u<pc, single-sharp-peak landscaf#7]. This model has been used

as a null model of quasispecies populations and a field theory
close to the critical point.. The previous expression serves of the reaction-diffusion rules can be developed.
to define the critical exponens. The analogy with error The paper is structured as follows. In Sec. Il we propose,
catastrophe is in this sense clear: for mutation rates largen analogy with the Swetina-Schuster modg7,29 a
than the error threshold, the virus is inviable and it quicklystreamlined reaction-diffusion model that captures the mini-
dies. For small mutation rates the virus is able to survive anénal elements in the reproduction/mutation mechanism of
reaches viable populations whose size is an increasing funguasispecies dynamics. Section Il reports a mean-field
tion of u.— w. Further extending the analogy with APT, we analysis, which allows to pinpoint the key parameters of the
can consider the spatial and time dependence of the ordefiodel. In Sec. IV we construct the field theory correspond-
parametery, and define the correlation functiog(r,t)= ing to the model. In analogy with the analysis performed by
<y(r',t")yy(r'+r,t" +t)>, where the bracket denote aver- van Wijland et al. and Kreeet al. [20,21], we obtain the
ages over different realizations of the system. According taelevant critical exponents. Finally, we interpret our results
the dynamic scaling ansaf25], we expect to observe close and put forward several experimental applications of them in
to the error threshold the behavior Sec. V.

g(r't):r—(d+n)F(%'%>, (5) Il. REACTION-DIFFUSION MODEL
¢ The key ingredient of our model consists in the assump-
which defines the correlation lengéhrelated to the distance tion that one of the sequenc@s=1, has a high replication
to u. by rate, whileall the othersA=1, ., have the same, lower rep-
lication rate. The first sequence is called the master sequence
E~—(pe— ). (6) and this approximation defines the so-called Swetina-
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Schuster model[27]. Second, by assuming that the se-quences in Ref.28], in a more natural way than in the origi-

guences are long enoudlonsistently with real RNA vi- nal quasispecies model, E®), in which one had to impose

ruses, where>10%), backward mutations from to B can  an external flow terni; in order to ensure conservation.

be neglected29]. The set of equation&) constitutes the core of our model.
In order to propose the reaction steps defining the modelSpatial effects are taken into account by allowing the differ-

we consider a simplified version of the Swetina-Schusteent particles to diffuse with respective diffusiviti€, and

model(see Ref[28], and references thergirin this model, Dy [30].

a population ofN strings of sizev evolves by a mechanism Given the interpretation of the different particles, it is

of replication with errors. Each string is defined by a se-natural to consideD,=Dg, that is, both master sequence

quenceS,, ...S,, with §;={0,1}. At each time step, we and mutants diffuse with the same speed. However, for the

select a string and replicate it, after removing another stringake of completeness, we will develop the formalism with

chosen at random. The replication takes place with probabilb ,# Dg, and make them equal only as a last step.

ity 1 for the master sequence, defined$y 1V i, and with

probability p<<1 for the rest. The replication procedure re- IIl. MEAN-EIELD ANALYSIS
places each elemei$; of the string forS/ =S, with prob- ) o o
ability 1— 2, and forS/=(S+1) mod 2 with probability In order to gain some preliminary intuition on the behav-

ior of the model, we analyze it by applying a standard mean-

. This version of the model shows in plain view the el- _ ; -
K P geld analysis. Let us denote kpg and p, the densities of

ementary steps of the error catastrophe: replication of th iesB and A velv. Si h .
master sequence at a certain rate, mutation of the mastSPeCiesB andA, respectively. Since the reactiofi) con-

sequence, and lack of backward mutation, for sufficientlyserve the_ nL_meer of particles, the total dengity+ pa is
large sequence length. Another important ingredient in th&onstant in time:
model to be remarked is the implicit constraint of constant L= ®
number of sequences, realized in the random deletion step, PeTPATD:
and which is usually implemented in the quasispecies anarhe classic(mean-field equations for the densitigss and
lytical models{4]. The model described in R¢R8] seemsto [, are readily found to be
display all the features of the error catastrophe.

Using this simple framework, we can translate the dynam- Jpg ,
ics of the Swetina-Schuster model at a microscopic level in - (A=A=p)pepa— 1P, (93
terms of reactions among particles of tyBeand A, corre-
sponding to the master sequence and the mutants, respec- apa
tively. The simplified model in Ref[28] implicitly intro- 7=—(1—)\—,U,)p3pA+,u,sz. (9b)
duces interactions among sequences, by means of the

random deletion step. Thus, our reaction-diffusion mOdebombining this with the conservation conditi¢®) we ob-

considers all the possible binary reactions between particlet%- ; ; :
; : in a single equation for the densjy of master sequences,
of type B andA, that are compatible with the outcome of the gleeq 2 g

rules used irf28]. The set of reactions that we consider is Ipg )
ot~ (A= A=u)pps—(1-M)ps. (10

)23
B+B—B+A, 7 . . . .
- (78 This equation has two stable stationary states, depending on

the value ofu:

1-p

B+A — B+B, (7b) pe=0 for u>1-X\, (11
» 1-\

A+B—A+A. (79 pe=—p—5p for p<i-x. (12)

The steps represent the replication/mutation of the first spe-

cies, coupled with the random deletion of the second specieat the mean-field level we observe the presence of a standard
Thus, the reactioii7a) implements the replication with mu- apsorbing-state phase transition at a critical pqipt= 1
tation of a master sequen8 which happens with an effec- ) |n the subcritical regimey> ., the order parameter
tive mutation rateu, coupled to the random deletion of a (in this case the density of master sequenhuasishes; in the

sequence of typd; the reaction(7b) represent the exact gypercritical region,u<u., the order parameter has a
replication of a master sequence, at rate/, with the de-  power-law dependence qn

letion of aA sequence; finally, the reacti¢vc) stands for the

exact replication of a sequengéeat rate\, together with the pe=(pec— )P, (13
deletion of a master sequence. All the remaining binary re-

actions with replication/mutation plus random deletion dowhich defines the critical exponegt in the mean-field ap-
not alter the total number of particles, and are thus not conproximation, 8==1. As we will see in the following sec-
sidered. The proposed set of reactions mimic the conserveibn, the presence of fluctuations will change the valugs of
nature of the model imposed by the random deletion of seat the relevant, experimental, dimensions. A very interesting
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property of this conserved reaction-diffusi@RD) model is  nearest neighbors of the site The first two terms in the

that the critical point is independent of the total particle denwight-hand side of Eq(15) implement diffusion through a

sity p, and is given as a function only of the reproductionrandom hopping of particles between nearest neighbor sites.

rate\. This situation should be compared with the conservaThe initial condition P({n},{m},0) is given by a Poisson

tive RD systems proposed so far, in which the total particledistribution, with an average density per site equal for both

density plays the role of the tuning parameter, and must bépes of particles.

tuned to a critical density, in order for the system to dis- The next step consists in recasting the master equation

play critical behaviof20,31]. into a “second quantized” form, following the procedure
The mean-field solution also provides the expression fodescribed by Doi and co-workef$6—19. We introduce two

the probabilityP that there is at least one master sequence isets of annihilation and creation operators at each lattice site,

the steady-state reginig2] b, andb/ for B particles, and; anda; for A particles, which
fulfill the standard commutation rule
P=0(pmc— ), (14)

a afl1=rb. bf1=s.
where® is the Heaviside function. [ai,aj]=[b; ’bJ] djj - (16)

]
With this commutation rule, the operators have a bosonic
IV. FIELD THEORY character, that is natural given the multiple occupancy of
sites allowed in the model. With the help of the vacuum state

diffusing in a hypercubic lattice of mesh sipeand sizel,  |0). defined bya;|0)=Db;[0)=0, we construct an orthonor-
that interact probabilistically according to the rul@when- ~ Mal basis of state,m), defined by

ever they meet at the same lattice site. The dynamics of the

model is defined through a master equation for the probabil- Inmy=[1 (b/)"M(ahm|o), (17
ity P({n},{m},t) of having a particle configuration i
{n}, {m} of particlesB andA, respectively, at tim¢. The

Our model consists in a set of particles of typeand A

and work in the Fock space spanned by this basis. In terms of

qonflguratlon{n}={n1,n2, L Nie} represents the oceupa his Fock space, the state of the system at tini® repre-
tion number of each node in the lattice. The master equation ;

for P is sented by the vector stalB(t)), defined as

d P(t))= P{n},{m},t)|n,m). (18
5 PAny.{mpt IP(t) {n%m} {n}Am}.Hln,m)

In terms of this vector state, the master equation, (&§),

_Ds E [(n:+1)P( n—1n+1 fmhb) can be rewritten as a Schiinger equation in imaginary time
12 2 i cooni—=1n+1, ... m},

d .
—nP({n}.{m}.0)] (158 atlPW)=—HIP), 19

Da with a Hamiltonian, or time-evolution operattﬁl,defined by
tg > [(m+1)P{n}, ...m—=1m+1,... 1)
1]

H=2, %é?—é*)(éi—ajw%(b?—b-*)(bi—bo

—m;P({n},{m},1)] (15b) i | n? ) '
(20)
+ i+1 iP...i+1,... i_l!"'rt_i ~ ~ AL~ ~ PN ALA A
MZ LRG0 " =0 +up>, (bf—a)b/b?+(1-w) >, (af—b)b/bia;
X(ni_l)P({n}i{m}vt)] (150)
+A2 (bf-ahafbia;. (21)

1= 2 (=DM DPC.n=1,...m
Equation(19) can be formally solved in terms of the operator
+1,... H—nmmP{n},{m},1)] (150 A vyielding

A [(M+1)(M—1)P(...n+1,...m—1,...1) [P(1)=exp =HOIP(0). @2

From this solution, it is possible to derive all the statistical
—nm;P({n},{m},t)], (159 properties of the RD system, applying a projection technique
[16-19. For practical purposes, it is convenient to map this
whereDg andD, are the diffusion coefficients fd andA  second-quantized form into a field theory, using a coherent
particles,i is summed over all the lattice sites, gnover the  state representation. Performing a time slicing of the evolu-
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tion operator in Eq.(22), via the Trotter formula, we can v=1,
express the vector staje(t)) as a path integral, weighted
with the exponential of an actio§, over a set of classical y=DA—Dg.

fieldsa*, a, b*, andb, which are related to the two types of
particles. After taking the continuum limih{-0), the vec- The coupling constants v, g;, anduv; are coarse-grained
tor state can be written as the path integral over space andersions of the microscopic reaction rates. Since we are only

time dependent fields
|P(t))=f DaDa* DbDb* exp — S a,a*,b,b*1)|P(0)),
(23)
where the actiors has the form33]
Sa,a*,b,b*]
=J dde dt{a*[9,—DV?]a+b*

X[d;—DgV?]b+ u(b* —a*)b*b2+(1— )
X (a*—b*)b*ab+\(b* —a*)a*ab}.

interested in the behavior of the system close to a critical
point, however, the actual value of these parameters is irrel-
evant[20,21].

A naive power counting shows that the critical dimension
of this field theory isd.=4, and that the coupling constants
v; are irrelevant, and can be, in principle, discarded. With
this final form, it is easy to recognize that the acti@Y)
represents the same field theory analyzed by van Wijland
et al. for the conserved reaction-diffusion model

B+A—2B,
B—A.

In their study, the authors worked out the renormalization
roup analysis for this system, for both cases<Dg and

Within this formalism, we can compute the average value o A= DB! providing the critical exponents up to a One_|oop

any observablé ({n},{m}) performing the path integral

<F(t))=Cf DaDa* DbDb*F(a,b)exp(— S a,a*,b,b*]),
(24)

where(C is an appropriate normalization constant.

The final step in the derivation of the field theory consists

in performing the shift
a*=1+a, b*=1+b, (25)
and the change of variables
Yy=b, ¢=a+b—p,

y=b—a, ¢=a. (26)

The final action describing the RD system is
SEATCRIE f dx f dt{yLay—DeV2y—ry
+ 9107~ oy b+ Lo — DAV p+ yV2y]
+ Y[ —ga— v+ v,
+ bl — Qath—vaprdtvayl}, 27

where we have defined the coupling constants
r=gs=(1-A—up,
g1=v4=1-X,
92=v3=1-A—u,

g3=pv1=(1—u)p,

expansion. The cade,=Dyg, which also corresponds to the
universality class of a model of population dynamics with
pollution described by Kreet al.[21], is the relevant one in
the problem under consideration. Quoting the results of Refs.
[20,21], we have the critical exponents

B=1- 35 (284
1
e (280
. &
n=- gi (280)
z=2, (28d)

wheree=4—d gives the dimensionality of the system. The
results forv, andz are exact, derived field theoretically by
analyzing the symmetries of the actigd7), and are thus
valid for all dimensions. The values gf and », on the other
hand, and expansions aroumsd0, and thus they are ex-
pected to hold only for small values ef

In view of the result428), the relevant exponents at the
physical dimensiod=3 are

v, =213, z=2,

B=0.969, 7=-0.125. (29

The values ofv, andz are exact, while those fg8 and »
represent an approximation given by the replacement of the
small parametee for 1. In dimensiond=2 or less, the ex-
ponents(28) have to be taken with a grain of salt, due to the
termsv; in Eq. (27), which might become relevant at low
dimensiond 20].
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V. DISCUSSION ness of the transitiofas defined by thg exponenk is not

The dynamical theory of molecular evolution developedvery different at different dimensions. This suggests that no

. - T~ -measurable differences should be expected to be observed in
by Eigen and Schuster reveals the presence of an intrinsic ; )

- . . ; . éxperimental systems. The correlation exponent how-
sharp limit to molecular information carriers. This thresholdever does change appreciably fram(d=1)=2 to v, (d
is a generic feature of replicator systems involving reproduc-_3)’_2/3 thus Iegadinppto a fa)s/teradpecorrelation atytealistic
tion and mutation. The Eigen-Schuster theory predicts that,. >/ 9

under the effect of evolutionary pressures selecting for higr?il'?e]re](r:];l?)?sdif?;rzztagtr:ii;izes?g ;\(I:Ii”é;rr:h:nci\e/et:es nggl'
variability, such replicators will evolve towards the error P 9 P

threshold. This is the case of RNA viruses and experimentaq main[34] and thus the probabiliies of success for the

0

evidence clearly supports this theoretical prediction. V|ruSs. | f thi h h oning. |
Previous theoretical models have analyzed the stochastic K everatrc]:atveatf gNtA'S .approak(‘: are V\t/ort” mer}:!onlnkg.dt

dynamics of quasispecies under different approaches. But q'ﬁ dnown a52reaW _”wrusesd ave aclua_ y mu 'ﬂe"’.‘ €

of them considered spatially implicit mode(snean-field- an s<_:ape§2 ,268. We will expan our analysis to such situ-

like), paying no attention to local effects derived from in- ation in a fu'gure work(although the .assomated field theory,

complete mixing. Here we have explored this problem usin onstructgd In terms of seyeral particles of tfe eaph one

the simplest quasispecies model, described by a single-sha presenting a different viable master sequence, is ex_pected

be much harder to develop and ana)yzdowever, in

peak replication landscape. The aim of our study was to se ituati th ) ! b dto b fined
how the statistical behavior of a spatially extended m0|eCUIama;>;‘itsrlulaJ:sI%r:aSak esguaifpoeucrle;fr:\r/?oﬁsSaerrglaysiso ezs(;%r:iglll(;
replication system would differ from the mean-field predic- ' . .

P y P holds[25,26. Also, the real RNA virus dynamics takes place

tions. through a virus-cell interaction not considered h hil
We have considered a simplified reaction-diffusion model rough a virus-cell interaction not considered here, wnile
several previous theoretical models used in order to under-

where two types of “particles’{the master sequence and the . .
yp b ( d stand well-defined experimental resu{tghere a cell popu-

mutant sequencesliffuse, replicate, and mutate on a given > .
d é P g lation was presenthave been shown to be successful in pro-

spatial domain. Applying the standard approach to" . ) ) .
absorbing-state phase transitions, a field theory has been dﬁglng a full understanding of the evolutionary dynamics of

veloped and it has been shown to be the same reported ))\‘A populations35,36.
Wijland et al. [20] and Kreeet al.[21].

The main message from our study is that relevant differ-
ences between mean-field models and real dynamics are ex-
pected to be observed even in the simplest scenario consid- The authors thank Santiago Elena, Peter Stadler, and
ered here. Larger deviations should be expected in morélessandro Vespignani for valuable comments and sugges-
realistic models incorporating a better description of molecutions. This work has been supported by Grant No. PB97-
lar replicators and their dynamics. In particular, the sharp0693 and by the Santa Fe InstityR.V.S).
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