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Abstract

Models of habitat fragmentation have mainly explored the effects on a few-species ecologies or on a hierarchical community of
competitors. These models reveal that, under different conditions, ecosystem response can involve sharp changes when some given
thresholds are reached. However, perturbations, recruitment limitation and other causes may prevent competitive hierarchies from
actually operating in natural conditions: the process of competitive exclusion underlying hierarchies could not be a determinant
factor structuring communities. Here we explore both spatially-implicit and spatially-explicit metapopulation models for a
competitive community, where the colonization-extinction dynamics takes place through neutral interactions. Here species
interactions are not hierarchical at all but are somehow ecologically equivalent and just compete for space and resources through
recruitment limitation. Our analysis shows the existence of a common destruction threshold for all species: whenever habitat
loss reaches certain value a sudden biodiversity collapse takes place. Furthermore, the model is able to reproduce species-rank
distributions and its spatially explicit counterpart predicts also species–area laws obtained from recent studies on rainforest plots.
It is also discussed the relevance of percolation thresholds in limiting diversity once the landscape is broken into many patches.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

When native vegetation is cleared (usually for agri-
culture or other kinds of intensive exploitation) habi-
tats which were once continuous become divided into
separate fragments(Hanski, 1999; Pimm, 1991). Af-
ter intensive clearing, the separate fragments tend to
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be very small islands isolated from each other by crop
land and pasture. Fragmentation and loss of habitat are
recognized as the greatest existing threat to biodiver-
sity. Fragmentation is occurring, to various degrees,
in nearly all of the major habitat types found through-
out the world. Rainforests, which comprise 6% of the
world’s land area and which contain at least 50% of
the world’s total species, are being cleared and frag-
mented at a rate far exceeding all other types of habi-
tat. Human-caused habitat fragmentation precipitates
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biodiversity decline because it destroys species, dis-
rupts community interactions, and interrupts evolu-
tionary processes(Ehrlich and Ehrlich, 1981; Pimm
et al., 1998; Leakey and Lewin, 1995; Levin, 1999).

How does habitat fragmentation affect biodiversity
in rich ecosystems? The answer to this question will
depend on the type of interactions displayed by the
species under consideration. Previous multispecies
models of habitat fragmentation have assumed the
presence of a hierarchical organization of competitive
interactions. The best known example is Tilman’s
model, defined as(Tilman, 1994; Tilman et al., 1994;
Tilman and Kareiva, 1997; Kareiva and Wennengren,
1995):

dpi

dt
= cipi
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pj


 − mipi −
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wherepi (i = 1, . . . , n) is the fraction of the occupied
habitat for thei-th competitor andD the fraction of
destroyed patches. Species specific colonization and
extinction rates are represented byci andmi, respec-
tively. Thesingle(non-zero) equilibrium state for this
system is given byp∗ = (p∗

1, . . . , p∗
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Here there is a hierarchical order from the first (best)
competitor to the last (worst) one. Extinction is as-
sumed to be constant for all species and the coloniza-
tion rates are chosen asci = m/(1 − q)2i−1, whereq

the abundance of the best competitor andi is the order
label in the competitive hierarchy. This choice assumes
a trade-off: the best competitor (i = 1) is the worst col-
onizer. Furthermore, such a choice allows to recover a
geometric distribution of species-abundances. One of
the most important consequences of this model is the
presence of a debt: a cascade of extinctions that occur
generations after fragmentation(Tilman et al., 1994).

Further analysis by Lewi Stone expanded the pre-
vious approach to coral reefs(Stone, 1995). By using
some studies on coral reefs in Israel, where the best
colonizer has the largest abundance, he correlated
mortality rates with colonization, thus assuming the

presence of a trade-off. Using this approximation,
Stone derived a simple relation between the number of
extinct species and fragmentation:E = √

D/α where
α is the ratio between the abundance of two successive
species used to set the initial distribution of abun-
dances. Stone’s work reveals that very small amounts
of habitat destruction have a huge detrimental effect
on coral reefs: a destruction of only 10% of the habitat
can trigger the loss of up to half the total species. From
Tilman’s et al. work, the effects on a forest ecosys-
tem would be less important, and the same amount of
destruction would only remove 5% of the species.

The competition–colonization trade-off seems to
be fundamental among competing species: the ability
to persist on a site, i.e., to be a good competitor, ver-
sus the ability to get to a new site, i.e. to be a good
colonizer. As a mechanism of coexistence was termed
fugitive coexistence(Fisher et al., 1951; Skellam,
1951). Since these two pioneering studies this trade-off
has been explored in several forms(MacArthur and
Wilson, 1967; Tilman, 1982, 1994; Stone, 1995;
Crowley and McLetchie, 2002)—see alsoHanski
(1999)and reference therein. But, to what extent are
actually hierarchies structuring natural competitive
communities?

It is important to remark here that the existence
of competitive hierarchies has been clearly shown to
structure competitive communities under experimen-
tal conditions. When there is an only limiting resource,
poorer competitors are displaced by superior com-
petitors as the resource is depleted(Tilman, 1982).
However, some recent studies point to the evidence
that competitive hierarchies are not always at work
under natural conditions. Rather than competitive lo-
cal exclusion under a strict hierarchy, studies on tree
diversity in neotropical forests seem to indicate that
recruitment limitation appears to be a major source of
control of tree diversity(Hubbell et al., 1999; Tilman,
1999). In other words, the winners of local compe-
tition are not necessarily the best (local) competitors
but those that happened to colonize that particular site
first. Such priority effects have been reported also in
other systems(Barkai and McQuaid, 1988).

Furthermore, a community of ecologically equiv-
alent species rather than a hierarchically structured
competitive community is the key assumption of a
theory supported by extensive field research mainly
in rainforest that, as E.O. Wilson says, “could be one
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of the most important contributions to ecology of the
past half century”(Hubbell, 2001). Thus, in this paper,
instead of considering a hierarchy of competitors, we
use a metapopulation model where species are eco-
logically equivalent in their colonization ability. In a
metapopulation context such an equivalence regarding
the fraction of colonized habitat and extinction thresh-
olds is achieved by an equal colonization-to-extinction
ratio (ci/mi) (Hanski, 1999). We are considering a
community where species may just colonize empty
sites and share the sameci/mi ratio. This constancy
can be seen as another possible expression of the fun-
damental competition–colonization trade-off. The bet-
ter colonizer a species is, the worst ability to persist on
a site (high extinction rate) it must have. Our model is
as general as that ofTilman (1994), but instead of as-
suming a strict competitive hierarchy it assumes strict
neutral competitive interactions.

Given that neutrality has been shown to account for
important regularities of community structure, such as
species relative abundance distributions and species
richness, and given also that it has been tested in very
different natural ecosystems(Hubbell, 2001), the con-
clusions, in particular, with regard to the consequences
of habitat loss, drawn from our approach might even
be more realistic and valid that those drawn form pre-
vious work.

In the second part of the paper, we expand the model
into a spatially-explicit context. Interestingly, the
spatially-explicit model supports the spatially-implicit
derived results and is able to produce realistic species-
abundance and species–area curves (SAR). In the
spatially-explicit model species are located on a
squared lattice and colonize just empty neighboring
sites. Better colonizers have greater extinction rates
and tend to persist less on a site. There is a fair
amount of evidence from many plant communities
for a trade-off between competitive strength, i.e, the
ability to persist, and dispersal, i.e, colonization abil-
ity (Lehman and Tilman, 1997). In forests limited
by light, the trees with the greatest ability to tolerate
shade are often competitively superior but severely
limited by dispersal. Dispersal limitation may be criti-
cal to understanding species coexistence and commu-
nity dynamics in tropical forests. It has been observed
that some tree species exhibits densely aggregated
spatial distributions independent of habitat structure.
Nearly all species exhibiting pronounced aggregation

had seeds dispersed by gravity or by ballistic dis-
persal. Thus, interactions between dispersal and the
ability to persist can affect spatial structure in popula-
tions in ways that could alter local diversity and com-
petitive interactions at the community level. Such a
scenario is known to provide an essentially unlimited
diversity.

2. Mean field model

A spatially-implicit, mean field (MF) metapopula-
tion model of such recruitment limitation process can
be easily formulated by means of a generalization of
Levins model(Levins, 1969)as:

dpi

dt
= fi(p) = cipi


1 − D −

S∑
j=1

pj


 − φ(ci)pi,

i = 1, . . . , S, (3)

including habitat fragmentation. Here the extinction
ratemi has been replaced (last term) bymi = φ(ci)

which gives the functional form of the trade-off. This
trade-off is chosen to rend all species ecologically
equivalent in their colonization ability, where as in
Hanski (1999), this equivalent ability means the same
ability to colonize and persist if they were in isola-
tion. So, we assume the samec/m ratio for all species.
Equivalently, we can write the functional form of the
trade-off then as:

φ(c) = α c (4)

We assumeα < 1, which means that no species
would go to extinction in isolation. Therefore, such
trade-off implies that high (low) colonization rates
are linked to high (low) local extinction rates, and can
be seen as a particular expression of the fundamental
competition–colonization (persistence ability versus
colonization ability) trade-off(Lehman and Tilman,
1997).

As a result of this choice, it is easy to see that the
total fraction of occupied patchesP = ∑

i pi will
evolve in time as:
dP

dt
=< c > (1 − D − P − α)P (5)

where< c >= ∑
i pi(t) ci/P(t) is the average colo-

nization rate at timet, and it is used that the average
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extinction rate is< φ(c) >= α < c > under the as-
sumption of a linear trade-off given by(4). Hence,
Eq. (5)has a unique positive stationary value, namely,
P∗ = 1 − D − α, which is globally asymptotically
stable for any initial conditionP(0) > 0. This implies
that the main result of this mean-field model (where
spatial correlations are not taken into account) is that
the global population will experience a collapse at a
critical threshold of habitat destructionDc = 1 − α

since, for this value ofD, P∗ = 0. And thus a diversity
collapse will occur atDc, instead that at increasing
values forD, as it was shown byTilman et al. (1994).

Eq. (3), endowed with a positive initial condition
p0 = (p0

1, . . . , p0
S), has as a unique stable equilibrium

p∗ which is given by

p∗
i = p0

i exp

(
ci

∫ ∞

0
(1 − D − α − P(t))dt

)
,

i = 1, . . . , S (6)

with P(t) a solution of(5) with initial conditionP0 =∑
i p

0
i . However, such an equilibrium is not asymptot-

ically stable. Notice that, for anyD < Dc, any initial
conditionp0 with P0 = 1− D − α is also an equilib-
rium of the model since, in this case,P(t) = P0 for all
t > 0 and, from(6), p∗

i = p0
i . In other words, model

(3) has aninfinite set of steady statesp∗ given by the
solutions compatible with the set of conditions

p∗
i = 1 − D − α −

∑
j �=i

p∗
j , i = 1, . . . , S (7)

WhenP0 �= 1 − D − α, it follows from (3) that, for
D < 1− α andP0 < P∗ = 1−D − α (P0 > P∗), all
fractions of occupied habitatpi(t) increase (decrease)
monotonously top∗

i given by (6) as t → ∞ since
P(t) < P∗ (P(t) > P∗) for all t > 0. Instead, forD ≥
1−α, all fractions of occupied habitat tends uniformly
to 0 ast → ∞ and, hence, diversity collapse occurs.

It is important to mention that the existence of a
non-trivial equilibrium of coexistence depends cru-
cially on the assumption of the ecological equivalence
in the way we have defined, i.e., as a linear trade-off
function φ(c). We could have even defined a more
strict version of ecological equivalence, as inHubbell
(2001), as an equivalence inper capitarates among
all individuals of every species. Even such an strict
ecological equivalence, asHubbell (2001)states “per-
mits complex ecological interactions among individ-

uals so long as all individuals obey the same interac-
tion rules”. In particular, notice that under such a strict
equivalence, our model predict as well a biodiversity
collapse at the same thresholdDc = 1 − α, where
α = mi/ci.

Note that, whenφ(c) is nonlinear, a model where
species just colonize empty sites like ours(3) has no
positive equilibrium solution different from the one
with only one competitor, namely, the best competi-
tor, i.e, that one with the lowest ratioφ(ci)/ci. In
this case,Eq. (3) do not support diversity. The un-
derlying hierarchy that can be seen now as a ranking
of species after colonization ability (the ratiomi/ci)
leads to the extinction of all species but one, the best
competitor. Once this point is reached the known crit-
ical threshold of habitat destruction for monospecific
metapopulations remains true but now readsDc =
1 − mini{φ(ci)/ci}. For instance, ifφ(c) = αc2, the
best competitor, i.e., the one which survives, will be
the one with the lowestci. However, ifφ(c) = α

√
c,

then the survival will be the competitor with the high-
estci.

Although Eqs. (3) and (5)are nonlinear coupled
equations and, so, it is not possible to solve them ex-
plicitly, a particularly relevant case can be analyzed
using some approximations. Let us consider the lin-
earized system

dpi

dt
=

S∑
j=1

(
∂fi(p

∗)
∂pj

)
pj, i = 1, . . . , S, (8)

where the elements of the Jacobian matrixLij =
∂fi(p

∗)/∂pj are given by:

Lii = ci


1 − D − α − p∗

i −
S∑

j=1

p∗
j


 (9)

(with i = 1, . . . , S) and, fori �= j,

Lij = −ci p
∗
i . (10)

Now let us assume that all populations start att = 0
with the same, small values

pi(0) = ε � 1 − D − α, i = 1, . . . , S. (11)

Close to the fixed pointp∗ = (0, . . . ,0), the linear
approximation(8) reads (using the linear trade-off):
dpi/dt = ci(1−D−α)pi which has a solution:pi(t) =
εexp(ci[1 − D − α]t).
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At a given time stepT , the probability of speciesi
under the linear approximation will be given by:

Pi(T) = eci[1−D−α]T∑S
j=1 ecj [1−D−α]T

, i = 1, . . . , S. (12)

Using the orderingci = i/S and using that

S∑
j=1

(eγT/S)j = eγT/S(1 − eγT )

1 − eγT/S
(13)

whereγ = 1 − D − α, we obtain

Pi(T) = Ze(i−1)γT/S, i = 1, . . . , S. (14)

HereZ is the normalization factor:

Z = 1 − eγT/S

1 − eγT
(15)

The last equations give a geometric distribution of
abundances, in agreement with field observations
from virgin habitats(Fisher et al., 1943; May, 1975)
To restate our result in ecological terms: the pro-
cess of ecological succession, i.e., the assembly of a
competitive community from scratch (pi(0) = ε �
1 − D − α) onto an empty area under the rules of
recruitment limitation and ecological equivalence
gives rise to a geometric distribution of abundances.
Alternatively, due to priority effects any other ini-
tial distribution of abundances will not ever tend to
a the geometric distribution at equilibrium unless
a strong perturbation resets the process of ecologi-
cal succession again. Moreover, it is interesting to
note that any geometric species rank distribution can
be rewritten as a relative abundance distribution of
the form p(x) ≈ x−β with β = 1. Thus, the same
power-law scaling exponent has been obtained before
in previous similar models where species compete for
space in a somehow neutral way(Engen and Lande,
1996; Solé et al., 2000; McKane et al., 2000; Pueyo,
2003).

To finish, now we need to estimate a reasonable
valueT ∗ in order to obtain some bound to the exact
distribution. Since there is no obvious characteristic
time scale to be used, we can estimateT ∗ by using
the condition
S∑

j=1

pj(T
∗) = 1 − D − α (16)

i.e., the time at which the linear system reaches the
maximum available population allowed by the nonlin-
ear model. Strictly that equilibrium should be reached
asymptotically as time tends to infinity. However, that
time can be approximately computed using the prop-
erties of the geometric series. It can be easily shown
that (16) can be written as

S∑
j=1

pj(T
∗) = ε

eγT ∗ − 1

1 − e−γT ∗/S = 1 − D − α.

Hence, forγT ∗/S close to zero and recalling thatγ =
1 − D − α it follows

1

T ∗ (eγT ∗ − 1) ≈ (1 − D − α)2

εS
. (17)

So,T ∗ can be reasonably estimated from(17) as long
as the numberS of species is large enough to guar-
antee thatγT ∗/S is close to zero. For instance, for
α = 0.5, S = 150,ε = 10−3 andD = 0, one obtains
T ∗ = 4.129 with γT ∗/S = 0.014. In Fig. 1 we plot
the exact, computed through the numerical integration
of system(3) and the approximate(14) distributions.
We can see an excellent agreement between them.

The behavior of this mean field model under habitat
destruction is summarized inFig. 2. Here we can see
(Fig. 2a) that species extinctions start to occur close to
Dc and that no extinction occurs below the threshold.
Note that, according toEq. (5), the characteristic time
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Fig. 1. Species-rank distribution from the mean field model (open
circles) and from the linear approximation (line). A geometric
series is obtained (showed in log-log scale in the inset).



70 R.V. Solé et al. / Ecological Complexity 1 (2004) 65–75

0.0 0.2 0.4 0.6 0.8 1.0
Habitat destruction D 

0.0

0.2

0.4

0.6

0.8

<
c>

0.0

1.0

2.0

3.0

4.0

5.0

E
nt

ro
py

0

20

40

60

80

100

E
xt

in
ct

 s
pe

ci
es

T=100
T=500
T=1500
T=3000

(A)

(B)

(C)

Fig. 2. Results obtained from the mean field model. Here we
show: (A) the fraction extinct species; (B) the entropy, as defined
by (15) and (C) the average colonization rate.

to extinction is propportional to 1/mi, and, therefore,
the loss of most persistent species can be very long.
Once D > Dc, however, extinctions sharply raise. A
different metric is provided by the entropy defined as

H(D) = −
S∑

j=1

P∗
j log(P∗

j ) (18)

where the stationary probabilities are:

P∗
j ≡

p∗
j

1 − D − α
, j = 1, . . . , S, (19)

(see Fig. 2b). It first slightly increases (as the species
occupying larger areas start to decrease in population
and the system becomes more homogeneous) and then
it rapidly falls off as species are lost. The average col-
onization shows a steady decrease for D < Dc but it
also drops close to the threshold (Fig. 2c). Given that
previous simulations have been done assembling the
community from scratch, under the prescription given

by (11), species that have higher colonization rates are
occupying larger areas (see (14)). That is why they
suffer first from habitat destruction. As in Tilman et al.
(1994), habitat destruction affects first those species
occupying larger areas. However, in contrast to previ-
ous models, the point to stress here is that a clearly
defined common extinction threshold arises.

3. Spatially-explicit model

In the this section, we consider the introduction
of spatially explicit effects, which are known to
play a leading role (Dytham, 1994; Dythman, 1995;
Bascomplte and Solé, 1996; Bascompte and Solé,
1998; Solé et al., 1996). Mean field models are often
challenged by their spatially explicit counterparts. In
particular, it has been shown that percolation pro-
cesses can alter the presence and location of extinc-
tion thresholds (Bascomplte and Solé, 1996). Besides,
finite-size effects will lead to a slow stochastic extinc-
tion of species unless immigration is introduced (Solé
et al., 2000; McKane et al., 2000; Hubbell, 2001). The
spatially explicit model is constructed using a stochas-
tic cellular automaton (Durrett and Levin, 1994;
Bascomplte and Solé, 1996) on a two-dimensional
lattice of L × L discrete patches and periodic bound-
ary conditions. Each site on the lattice can be either
unoccupied or occupied by one of S possible species.
Actually the model can be accurately formalized as an
interacting particle system as in Durrett (1999), where
it is also included a multispecies neutral competition
model. However, our model assumes local coloniza-
tion of just neighboring sites as in Keymer et al.
(2000). Moreover, although it has been stated that such
neutral competition, where births are just possible on
empty sites, precludes the system from stable species
coexistence (Neuhauser, 1992), time to fixation of just
one species can be very long when the system is large.
In addition, external immigration prevents to reach
monodominance and, provided low, could be added to
our analysis without changing our conclusions —see
also Hubbell (2001), Alonso (2004).

3.1. Model definition

Our system is modeled as a continuous-time Mar-
kov process where transitions occurs asynchronously
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so that within a short enough time interval only a
single transition can take place. The state of the
system at a time t is described by giving the state
of each site. The dynamics assumes two elemental
processes:

1. Extinction. Any occupied site on the lattice can
undergo extinction. Each species goes to extinction
at a particular rate, mi = α ci.

j
mi−→ 0. (20)

2. Colonization. Any free site can undergo coloniza-
tion.

0
rk−→j. (21)

where j is any potentially colonizing species from
the neighborhood of the k site. Colonization rates
depend on the colonization pressure caused by
neighboring occupied sites. Assuming that the k

site is free, colonization rate of this site at time t

can be computed as:

rk =
S∑

j=1

cj × ρ
(k)
j (22)

where ρ
(k)
j is the local density, so the number of

neighbors of the k site that are occupied by species
j divided by the total number of neighboring sites,
z (z = 4, so von Neumann neighborhood was used
in our simulations). Whenever a colonization event
is to occur at that rate in k site, the particular colo-
nizing species is elected according to the probabil-
ities given by the different non-zero terms in (22).

The particular simulation strategy is detailed else-
where (Alonso and McKane, 2002). The algorithm is
based on the rejection method described in Press et al.
(1992). It is interesting to mention that by changing
local density by global densities in (22), this formal
model definition ensures the converge of averages
values over replicas of stochastic simulations to the
mean field patch occupancy model (Eq. (3)).

A first test of the interest of this model involves
the analysis of the statistical regularities displayed by
the virgin, non-destroyed habitat. A first observation
is that after a decline in the number of species (which
can be easily balanced by introducing immigration)
the system settles down into a high-diversity state. A

Fig. 3. Snapshot of the metapopulation model for L = 100,
S = 150 and a linear trade-off with α = 0.25. Here the gray
scale indicates the values of the colonization rate displayed by the
specific species at each patch.

snapshot of a L = 100, S = 150 and α = 0.25 sys-
tem is shown in Fig. 3. Here gray scales just indicate
different species. We can see a patchy distribution of
most species (some others have very scattered).

The patterns of species-abundance (consistent with
the mean field model) and the species–area relations
follow the observed patterns reported from field stud-
ies (Hubbell et al., 1999). These results are shown
in Fig. 4, where the geometric distribution of species
abundances is obvious from the species-rank distribu-
tion. The scaling law for the species–area relation is
the same as the one observed in the Barro Colorado
50 Ha plot (with an exponent z = 0.71 ± 0.01; see
Hubbell et al. (1999), Brokaw and Busing (2000)).
In summary, the imposed ecological equivalence
through a simple trade-off together with the rules of
local colonization are enough to recover two rele-
vant, well-defined characteristics of real rainforests
(compare with Hubbell et al. (1999)).

The effects of habitat destruction are, as expected
from the mean field model, very important. In a previ-
ous study on habitat fragmentation in spatially-explicit
models, it was shown that random destruction of
patches leads to a critical point where sudden breaking
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Fig. 5. Effects of habitat destruction on the spatial metapopulation model; here L = 50, S = 150 and α = 0.25. (A) number of species for
different D values; (B) average colonization rate: it shows a decay due to the extinction of best colonizators. In (C) the Shannon entropy
is shown. The arrow indicates the percolation threshold D∗ = 0.41 and the dashed line the mean field threshold Dc = 0.75.

into many small sub-areas promotes a rapid decay
of the observed global population (Bascomplte and
Solé, 1996; Bascompte and Solé, 1998; Solé and
Bascompte, 2004). This occurs at the percolation
value D∗ ≈ 0.41 (i.e. when the proportion of avail-
able sites is 1 − D∗ ≈ 0.59) where it can be shown
that the largest available patch cannot longer be con-
nected and splits into many sub-patches. The same
effect has been found in our system. In Fig. 5(a), we
show the biodiversity decay linked to the presence
of a percolation phenomenon in the spatially-explicit
landscape. As we can see, there is a steady decay in
the number of species present as D increases, with a
rapid decay as D∗ is approached.

A different view of the decay can be obtained by
plotting the Shannon entropy (Fig. 5(c)). We can see
that it first increases as the best colonizers become less
and less abundant (and the species-abundance distri-
bution becomes more uniform). At D∗ the effective
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loss of diversity reduces the value of the entropy which
drops rapidly. As it was shown by the MF model, the
average colonization rate also decreases (Fig. 5(b)).
As D∗ is approached, the average colonization rate
goes down. This indicates in fact that the rapid de-
crease in available habitat favours species with lower
colonization rates in detriment to better dispersors but
less persistent species.

4. Discussion

In this paper we have analyzed the properties of a
simple model of metapopulation dynamics involving
recruitment limitation and ecological equivalence.
By recruitment limitation we meant that species can
just colonize empty space. Instead of considering a
hierarchical model of species competition, we have
explored the consequences of recruitment limitation
when habitat is destroyed and fragmented. Ecological
equivalence is achieved by a simple trade-off where
colonization is a linear function of extinction. The ba-
sic results obtained from our study are as given further.

1. The mean-field model of recruitment limitation
introduces an infinite number of steady states (in-
stead of a single attractor). This is an important fac-
tor in the path-dependence shown by the stochastic
model. In particular and as a consequence of such
path dependence, the system can be maintained far
away from the expected geometric (or log-series)
distributions unless strong perturbations under-
mine priority effects at least from time to time.

2. Under this scenario, the mean-field model predicts
that biodiversity will experience a collapse close
to the critical density Dc = 1 − α, 0 < α < 1.
This is very different from previous predictions,
where extinction increases with D in a nonlinear
way but keeping surviving species at high D val-
ues. Our result is closer to Stone’s finding where
trade-offs lead to rapid declines in diversity under
small habitat loss.

3. The assumed ecological equivalence through the
trade-off imposed by the colonization-extinction
relation together with the random fluctuations im-
plicit in the model rules lead to a stochastic mul-
tiplicative process with a geometric species-rank
distribution of abundances, as predicted by theoret-

ical models and to the right species–area relations
reported from field studies in rainforests.

4. Under fragmentation, the system response is
strongly influenced by percolation thresholds:
once the critical value D∗ = 0.41 is reached, the
fragmentation of the system into many patches
leads to diversity collapse. The best colonizers are
the first to get extinct. This model result should
be qualified in the sense that real ecosystems are
not isolated and, as a consequence, extinct good
colonizers are most prone to be rescued by im-
migration from the region where the system is
embedded.

A further comment to highlight is related to the geo-
metric rank-abundance distribution we have obtained.
It is formally equivalent to a power-low relative abun-
dance distribution p(x) ≈ x−β, with β = 1. This dis-
tribution has been derived under different approaches
from sound first principles by making different as-
sumptions. Tilman (1994) assumes it and finds the
functional form of colonization rates that, by allowing
coexistence, is compatible with it. He finds that the
higher the competition rank a species has in the hier-
archy, the lower its colonization rate is. Other similar
trade-offs have also found to be responsible for geo-
metric like distributions in competitive communities
(Chave et al., 2002). Instead of trade-offs, Engen
and Lande (1996), Solé et al. (2000), McKane et al.
(2000), and Pueyo (2003) give the minimum require-
ments for geometric distribution to arise from simple
dynamic population models. Pueyo (2003) even tests
these predictions using an exceptional amount of data
(almost a million of identified individual cells from
phytoplankton samples) and finds high statistical sig-
nificance for the scaling p(x) ≈ x−β with β = 1
within the abundance interval 10 < n < 10,000. In
particular, global constrains turn geometric distri-
bution into the well-known log-series (Fisher et al.,
1943), which is nothing but a power law with an ex-
ponential cut-off. In fact, Hubbell (2001) also finds
the log-series distribution as limiting case of large
systems at the metacommunity level. However, there
is a common point of all these approaches: in order
to get such scaling for the abundance distribution of
species, species must be ecologically equivalent ei-
ther explicitly assumed or trade-off mediated. Such
ecological equivalence means equivalence in fitness,
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i.e., on average all species have the same probability
to put one individual into the next generation. Natu-
ral selection and zero-sum dynamics(Hubbell, 2001),
i.e, any increase in abundance of one species must
be counterbalanced by an equivalent decrease in
the abundance of other species, have poised and
maintained species-rich communities in this crit-
ical state, where the scaling properties, such as
those for the species-abundance distribution and
the SAR, naturally arise (Solé et al., 2002; Pueyo,
2003).

Regarding habitat loss, our results must be re-ana-
lyzed using other approximations, such as other types
of fragmentation involving correlations of different
types (Dythman, 1995; Hill and Caswell, 1999), dy-
namic landscapes (Keymer et al., 2000) and screening
effects (Alonso and Solé, 2000). In particular, there
can be a non-trivial interaction between the predicted
extinction threshold at D = 1−α, that should operate
at global dispersion and the percolation well-known
threshold at D = 0.41, that would operate at strict
first-neighbors local colonization. In natural condi-
tions, colonization occurs neither completely globally
nor completely locally. In any case, our results seem
to be robust and make the point of a common extinc-
tion threshold for all species as habitat is lost resulting
in a biodiversity collapse.

Even though geometric rank-abundance distribu-
tions seem to hold provided that ecological equiva-
lence is guaranteed, its particular expression can have
strong consequences in the way habitat destruction
affects diversity. In contrast to other previous models
(Tilman et al., 1994; Stone, 1995), our work predicts
the existence of a common destruction threshold. So,
rather in the line of Stone’s findings, it predicts a
devastating high non-linear effect of small amounts
of habitat losses on community integrity. Different
departures from our model including contact-like
processes, voter models, and external immigra-
tion fully confirm this result (Alonso, 2004). The
fact that chance events and limited recruitment can
slow down competitive exclusion and lead to strong
path-dependence makes our present results likely to
apply to a wide range of current scenarios of rapid
diversity loss. Our model should provide a better un-
derstanding of how competitive communities are orga-
nized and how fragile they are when habitat loss takes
place.
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